[1] RADFORD A, NARASIMHAN K, SALIMANS T, et al.Improving language understanding by generative pre-training[EB/OL].[2022-04-27].https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. [2] RADFORD A, WU J, CHILD R, et al.Language models are unsupervised multitask learners[EB/OL].[2022-04-27].https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf. [3] BROWN T B, MANN B, RYDER N, et al.Language models are few-shot learners[EB/OL].[2022-04-27].https://arxiv.org/pdf/2005.14165.pdf. [4] WARNAT-HERRESTHAL S, SCHULTZE H, SHASTRY K L, et al.Swarm learning for decentralized and confidential clinical machine learning[J].Nature, 2021, 594(7862):265-270. [5] JIANG J C, KANTARCI B, OKTUG S, et al.Federated learning in smart city sensing:challenges and opportunities[J].Sensors(Basel, Switzerland), 2020, 20(21):6230. [6] LIM W Y B, LUONG N C, HOANG D T, et al.Federated learning in mobile edge networks:a comprehensive survey[J].IEEE Communications Surveys & Tutorials, 2020, 22(3):2031-2063. [7] YANG Q, LIU Y, CHEN T J, et al.Federated machine learning[J].ACM Transactions on Intelligent Systems and Technology, 2019, 10(2):1-19. [8] ZHU L, LIU Z, HAN S.Deep leakage from gradients[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2019:14774-14784. [9] MELIS L, SONG C Z, DE CRISTOFARO E, et al.Exploiting unintended feature leakage in collaborative learning[C]//Proceedings of IEEE Symposium on Security and Privacy.Washington D.C., USA:IEEE Press, 2019:691-706. [10] YAN X D, CUI B J, XU Y, et al.A method of information protection for collaborative deep learning under GAN model attack[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(3):871-881. [11] HITAJ B, ATENIESE G, PEREZ-CRUZ F.Deep models under the GAN:information leakage from collaborative deep learning[C]//Proceedings of 2017 ACM SIGSAC Conference on Computer and Communications Security.New York, USA:ACM Press, 2017:603-618. [12] PYRGELIS A, TRONCOSO C, DE CRISTOFARO E.Knock knock who's there?Membership inference on aggregate location data[EB/OL].[2022-04-27].https://arxiv.org/pdf/1708.06145.pdf. [13] SATTLER F, WIEDEMANN S, MÜLLER K R, et al.Robust and communication-efficient federated learning from non-i.i.d.data[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9):3400-3413. [14] SAHU A K, LI T, SANJABI M, et al.On the convergence of federated optimization in heterogeneous networks[EB/OL].[2022-04-27].https://arxiv.org/pdf/1812. 06127.pdf. [15] LI X, HUANG K, YANG W, et al.On the convergence of FedAvg on non-iid data[EB/OL].[2022-04-27].https://arxiv.org/pdf/1907.02189.pdf. [16] MCMAHAN H B, MOORE E, RAMAGE D, et al.Communication-efficient learning of deep networks from decentralized data[EB/OL].[2022-04-27].https://arxiv.org/abs/1602.05629. [17] ZHAO Y, LI M, LAI L, et al.Federated learning with non-IID data[EB/OL].[2022-04-27].https://arxiv.org/pdf/1806.00582.pdf. [18] 朱建明, 张沁楠, 高胜, 等.基于区块链的隐私保护可信联邦学习模型[J].计算机学报, 2021, 44(12):2464-2484. ZHU J M, ZHANG Q N, GAO S, et al.Privacy preserving and trustworthy federated learning model based on blockchain[J].Chinese Journal of Computers, 2021, 44(12):2464-2484.(in Chinese) [19] SATOSHI N.Bitcoin:a peer-to-peer electronic cash system[EB/OL].[2022-04-27].https://bitcoin.org/en/bitcoin-paper. [20] The Technical Working Group China.Fabric-documentation[EB/OL].[2022-04-27].https://hyperledger-fabric.readthedocs.io/zh_CN/release-2.2/index.html. [21] KONEČNÝ J, MCMAHAN B, RAMAGE D, et al.Federated optimization:distributed optimization beyond the datacenter[EB/OL].[2022-04-27].https://arxiv.org/pdf/1511.03575.pdf. [22] GHOSH A, CHUNG J, YIN D, et al.An efficient framework for clustered federated learning[J].Advances in Neural Information Processing Systems, 2020, 33:19586-19597. [23] LI X C, ZHAN D C.FedRS:federated learning with Restricted Softmax for label distribution non-IID data[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2021:995-1005. [24] SATTLER F, MÜLLER K R, SAMEK W.Clustered federated learning:model-agnostic distributed multitask optimization under privacy constraints[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8):3710-3722. [25] DUAN M M, LIU D, JI X Y, et al.Flexible clustered federated learning for client-level data distribution shift[J].IEEE Transactions on Parallel and Distributed Systems, 2022, 33(11):2661-2674. [26] BAO X, SU C, XIONG Y, et al.FLChain:a blockchain for auditable federated learning with trust and incentive[C]//Proceedings of the 5th International Conference on Big Data Computing and Communications.Washington D.C., USA:IEEE Press, 2019:151-159. [27] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324. |