[1] ZHENG H T,FANG L,JI M Q,et al.Deep learning for surface material classification using haptic and visual information[J].IEEE Transactions on Multimedia,2016,18(12):2407-2416. [2] STRESE M,SCHUWERK C,IEPURE A,et al.Multimodal feature-based surface material classification[J].IEEE Transactions on Haptics,2017,10(2):226-239. [3] 王玉伟,董西伟,陈芸.基于稀疏表示的多模态生物特征识别算法[J].计算机工程,2016,42(10):219-225. WANG Y W,DONG X W,CHEN Y.Multimodal biometric recognition algorithm based on sparse representation[J].Computer Engineering,2016,42(10):219-225.(in Chinese) [4] 杨楠.基于视触觉多特征融合的步态识别方法研究[D].天津:河北工业大学,2015. YANG N.Study on gait recognition method based on visual-tactile features fusion[D].Tianjin:Hebei University of Technology,2015.(in Chinese) [5] 李凤雪.基于局部感受野极限学习机的研究与应用[D].太原:太原理工大学,2017. LI F X.Research and application based on ELM-LRF[D].Taiyuan,Taiyuan University of Technology,2017.(in Chinese) [6] 冯德正,FRANCIS L.多模态研究的现状与未来——第七届国际多模态会议评述[J].上海外国语大学学报,2015,38(4):108-113. FENG D Z,FRANCIS L.State of the art and future directions of multimodal studies:a review of the 7th international conference on multimodality[J].Journal of Foreign Languages,2015,38(4):108-113.(in Chinese) [7] LIU H P,WU Y P,SUN F C,et al.Weakly paired multimodal fusion for object recognition[J].IEEE Transactions on Automation Science and Engineering,2018,15(2):784-795. [8] LIU H P,SUN F C,FANG B,et al.Multimodal measurements fusion for surface material categorization[J].IEEE Transactions on Instrumentation and Measurement,2018,67(2):246-256. [9] 杨斌,钟金英.卷积神经网络的研究进展综述[J].南华大学学报(自然科学版),2016,30(3):66-72. YANG B,ZHONG J Y.Review of convolution neural network[J].Journal of University of South China (Science and Technology),2016,30(3):66-72.(in Chinese) [10] 孙新胜.基于多层卷积神经网络的研究与应用[D].杭州:杭州电子科技大学,2018. SUN X S.Research and application of multi-layer convolution neural network[D].Hangzhou:Hangzhou Dianzi University,2018.(in Chinese) [11] 杨楠,南琳,张丁一,等.基于深度学习的图像描述研究[J].红外与激光工程,2018,47(2):9-16. YANG N,NAN L,ZHANG D Y,et al.Research on image interpretation based on deep learning[J].Infrared and Laser Engineering,2018,47(2):9-16.(in Chinese) [12] HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of 2004 IEEE International Joint Conference on Neural Networks.Washington D.C.,USA:IEEE Press,2004:985-990. [13] HUANG G B,BAI Z,KASUN L L C,et al.Local receptive fields based extreme learning machine[J].Computational Intelligence Magazine,2015,10(2):18-29. [14] HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1/2/3):489-501. [15] HUANG G B,ZHOU H M,DING X J,et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems,Man and Cybernetics,Part B(Cybernetics),2012,42(2):513-529. [16] HUANG J H,YU Z L,CAI Z Q,et al.Extreme learning machine with multi-scale local receptive fields for texture classification[J].Multidimensional Systems and Signal Processing,2016,28:995-1011. [17] LIU H P,FANG J,XU X Y,et al.Surface material recognition using active multi-modal extreme learning machine[J].Cognitive Computation,2018,10:937-950. [18] LIANG N T,HUANG G B,SARATCHANDRAN P,et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-1423. [19] LAN Y,SOH Y C,HUANG G B.A constructive enhancement for online sequential extreme learning machine[C]//Proceedings of 2009 International Joint Conference on Neural Network.Washington D.C.,USA:IEEE Press,2009:1708-1713. [20] 方静.基于LRF-ELM算法的研究及其在物体材质分类中的应用[D].太原:太原理工大学,2018. FANG J.The research based on LRF-ELM algorithm and its application in object material classification[D].Taiyuan,Taiyuan University of Technology,2018.(in Chinese) [21] FANG J,XU X Y,LIU H P,et al.Local receptive field based extreme learning machine with three channels for histopathological image classification[J].International Journal of Machine Learning and Cybernetics,2018,10(7):1437-1447. [22] XU X Y,FANG J,LI Q,et al.Multi-scale local receptive field based online sequential extreme learning machine for material classification[C]//Proceedings of ICCSIP'18.Berlin,Germany:Springer,2018:37-53. |