[1] HARIHARAN B, ARBELAEZ P, GIRSHICK R, et al.Simultaneous detection and segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:297-312. [2] DAI J F, HE K M, SUN J.Instance-aware semantic segmentation via multi-task network cascades[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:3150-3158. [3] HE K, GKIOXARI G, DOLLAR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2980-2988. [4] KARPATHY A, FEI-FEI L.Deep visual-semantic alignments for generating image descriptions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):664-676. [5] WU Q, SHEN C, WANG P, et al.Image captioning and visual question answering based on attributes and external knowledge[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1367-1381. [6] KANG K, LI H S, YAN J J, et al.T-CNN:tubelets with convolutional neural networks for object detection from videos[J].IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(10):2896-2907. [7] DENG J, GUO J, XUE N, et al.ArcFace:additive angular margin loss for deep face recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:4685-4694. [8] 崔坤坤, 樊绍胜.基于动态双窗口的机器人视觉导航与特征识别方法[J].计算机工程, 2020, 46(9):313-320. CUI K K, FAN S S.Visual navigation and feature recognition method of robot based on dynamic double windows[J].Computer Engineering, 2020, 46(9):313-320.(in Chinese) [9] CHEN X Z, MA H M, WAN J, et al.Multi-view 3d object detection network for autonomous driving[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6526-6534. [10] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:580-587. [11] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1440-1448. [12] REN S, HE K, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [13] LIN T, DOLLAR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [14] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.[S.l.]:Eurographics Association Press, 2016:21-37. [15] LIN T, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. [16] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [17] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [18] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2019-11-02].https://arxiv.org/abs/1804.02767. [19] YU J H, JIANG Y N, WANG Z Y, et al.Unitbox:an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia.New York, USA:ACM Press, 2016:516-520. [20] REZATOFIGHI H, TSOI N, GWAK J, et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:658-666. [21] 何智成, 王振兴.基于改进YOLOv2的白车身焊点检测方法[J].计算机工程, 2020, 46(11):246-254. HE Z C, WANG Z X.Welding spot detection method for body in white based on improved YOLOv2[J].Computer Engineering, 2020, 46(11):246-254.(in Chinese) [22] ZHOU J, TIAN Y C, YUAN C, et al.Improved UAV opium poppy detection using an updated YOLOv3 model[J].Sensors, 2019, 19(22):4851. |