[1] CHEN C L, TAO X, GONG S G.Multi-camera activity correlation analysis[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Miami, Florida, USA:IEEE Press, 2009:1988-1995. [2] RISTANI E, SOLERA F, ZOU R S, et al.Performance measures and a data set for multi-target, multicamera tracking[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:17-35. [3] YU S I, YI Y, HAUPTMANN A.Harry potter's marauder's map:localizing and tracking multiple persons-of-interest by nonnegative discretization[C]//Proceedings of Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2013:3714-3720. [4] MAZZON R, CAVALLARO A.Multi-camera tracking using a multi-goal social force model[J].Neurocomputing, 2013, 100(1):41-50. [5] VEZZANI R, BALTIERI D, CUCCHIARA R.People reidentification in surveillance and forensics[J].ACM Computing Surveys, 2013, 46(2):1-37. [6] DAI J F, LI Y, HE K, et al.R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2016:379-387. [7] ZHENG Z D, ZHENG L, YANG Y.Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:3774-3782. [8] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of Neural Information Processing Systems.Cambridge, USA:MIT Press, 2014:2672-2680. [9] ZHENG Z D, YANG X D, YU Z D, et al.Joint discriminative and generative learning for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:2138-2147. [10] DENG W J, ZHENG L, YE Q X, et al.Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:994-1003. [11] BAK S, CARR P, LALONDE J F.Domain adaptation through synthesis for unsupervised personre-identification[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:193-209. [12] KODIROV E, XIANG T, FU Z Y, et al.Person re-identification by unsupervised ℓ1 graph learning[J].Hydrobiologia, 2016, 415(11):178-195. [13] YU H X, WU A C, ZHENG W S.Cross-view asymmetric metric learning for unsupervised person re-identification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:994-1002. [14] FAN H H, ZHENG L, YAN C G, et al.Unsupervised person re-identification:clustering and fine-tuning[J].ACM Transactions on Multimedia Computing Communications and Applications, 2018, 14(4):1-18. [15] YU H X, ZHENG W S, WU A C, et al.Unsupervised person re-identification by soft multilabel learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:2143-2152. [16] LIN Y T, XIE L X, WU Y, et al.Unsupervised person re-identification via softened similarity learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:3390-3399. [17] ZHENG L, SHEN L Y, TIAN L, et al.Scalable person re-identification:a benchmark[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1116-1124. [18] WEI L H, ZHANG S L, GAO W, et al.Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:79-88. [19] MOON H, PHILLIPS P J.Computational and performance aspects of PCA-based face-recognition algorithms[J].Perception, 2001, 30(3):303-321. [20] JIA D, WEI D, SOCHER R, et al.ImageNet:a large-scale hierarchical image database[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2009:248-255. [21] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [22] Pytorch[EB/OL].[2021-01-20] https://pytorch.org/. [23] ZHONG Z, ZHENG L, KANG G L, et al.Random erasing data augmentation[EB/OL].[2021-01-23].https://arxiv.org/pdf/1708.04896.pdf. [24] BOTTOU L.Large-scale machine learning with stochastic gradient descent[C]//Proceedings of the 19th International Conference on Computational Statistics.Berlin, Germany:Springer, 2010:177-186. [25] ZHONG Z, ZHENG L, ZHENG Z D, et al.Camstyle:a novel data augmentation method for person re-identification[J].IEEE Transactions on Image Processing, 2019, 28(3):1176-1190. [26] LIN S, LI H L, LI C T, et al.Multi-task mid-level feature alignment network for unsupervised cross-dataset person re-identification[EB/OL].[2021-01-23].https://arxiv.org/pdf/1807.01440.pdf. [27] WANG J Y, ZHU X T, GONG S G, et al.Transferable joint attribute-identity deep learning for unsupervised person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2275-2284. [28] ZHONG Z, ZHENG L, LI S Z, et al.Generalizing a person retrieval model hetero- and homogeneously[C]//Proceedings of European Conference on Computer Vision.New York, USA:ACM Press, 2018:176-192. [29] ZHONG Z, ZHENG L, LUO Z M, et al.Invariance matters:exemplar memory for domain adaptive person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:598-607. [30] ZHOU J H, SU B, WU Y.Online joint multi-metric adaptation from frequent sharing-subset mining for person re-identification[C]//Proceedings of IEEE/CVF Conference on Compunter Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2909-2918. |