作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (4): 85-91,100. doi: 10.19678/j.issn.1000-3428.0064346

• 人工智能与模式识别 • 上一篇    下一篇

一种基于锚框质量分布的动态标签分配策略

王璐璐1,2, 陈东方1,2, 王晓峰1   

  1. 1. 武汉科技大学 计算机科学与技术学院, 武汉 430065;
    2. 武汉科技大学 智能信息处理与实时工业系统湖北省重点实验室, 武汉 430065
  • 收稿日期:2022-03-31 修回日期:2022-05-17 发布日期:2022-08-09
  • 作者简介:王璐璐(1999-),女,硕士,主研方向为深度学习、目标检测;陈东方,教授、博士;王晓峰,副教授、博士。
  • 基金资助:
    国家自然科学基金(61572381,61273225)。

A Dynamic Label Assignment Strategy Based on Quality Distribution of Anchor

WANG Lulu1,2, CHEN Dongfang1,2, WANG Xiaofeng1   

  1. 1. School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China;
    2. Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan University of Science and Technology, Wuhan 430065, China
  • Received:2022-03-31 Revised:2022-05-17 Published:2022-08-09

摘要: 传统的标签分配策略根据锚框与ground-truth之间的交并比(IoU)是否超过阈值来划分正负样本,但确定IoU阈值需要依靠大量的经验和实验,并且在不同的网络结构中需要重新设定新的阈值;其次固定的阈值无法保证正负样本数量变化的平缓,过多或过少的正样本都将影响网络训练的稳定性。为解决这些问题,提出一种自适应标签分配策略。根据中心先验原则设计中心权重,通过联合分类得分和定位得分表示锚框质量,组成一个统一的锚框评分方案便于简化划分步骤。为了使网络能够根据训练程度自适应调整IoU阈值,保证网络训练的稳定性,利用锚框质量高斯函数模拟锚框总体质量得分的分布情况,使用极大似然估计算法获取最优参数,根据统计结果动态预测最佳IoU阈值。实验结果表明,该算法在基于锚框和基于无锚框的检测算法中均使检测性能得到有效提升,在PASCAL VOC数据集上分别提升3.1和6.6个百分点,并且可以有效降低漏检率。

关键词: 标签分配, 目标检测, 深度学习, 样本, 交并比

Abstract: Traditional label assignment strategies divide positive and negative samples according to whether the Intersection over Union(IoU) between the anchor and ground-truth exceeds the threshold.However, determining the IoU threshold requires considerable experience and experimentation, and new thresholds must be set for different network structures.Moreover, a fixed threshold cannot guarantee the consistent partitioning of positive and negative samples, and too many or too few positive samples will affect the reliability of network training.To solve these problems, we propose an Adaptive Label Assignment Strategy(ALAS).First, the center weights are designed according to the center prior principle;the anchor quality is represented by the joint classification and localization scores;and a unified anchor scoring scheme is developed to simplify the partition.To enable the network to adaptively adjust the IoU threshold according to the degree of training and ensure the consistency of network training, the anchor quality Gaussian function is used to simulate the distribution of the overall quality score of the anchor.The maximum likelihood estimation algorithm is used to obtain optimal parameters, and then the optimal IoU threshold is dynamically predicted based on statistical results.The experimental results show that the algorithm can effectively improve both anchor-based and non-anchor-based detection algorithms, and it improves these algorithms by 3.1 and 6.6 percentage points, respectively, on the PASCAL VOC dataset. Therefore, it can effectively reduce missed detection rates.

Key words: label assignment, object detection, deep learning, sample, Intersection over Union(IoU)

中图分类号: