[1] ZHOU X H, SUN J, LI G L, et al.Query performance prediction for concurrent queries using graph embedding[J].Proceedings of the VLDB Endowment, 2020, 13(9):1416-1428. [2] LI G L, ZHOU X H, LI S F, et al.QTune:a query-aware database tuning system with deep reinforcement learning[J].Proceedings of the VLDB Endowment, 2019, 12(12):2118-2130. [3] PAVLO A, ANGULO G, ARULRAJ J, et al.Self-driving database management systems[EB/OL].[2021-04-05].https://www.db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf. [4] CHAIKEN R, JENKINS B, LARSON P, et al.SCOPE:easy and efficient parallel processing of massive data sets[J].Proceedings of the VLDB Endowment, 2008, 1(2):1265-1276. [5] 李国良, 周煊赫.面向AI的数据管理技术综述[J].软件学报, 2021, 32(1):21-40. LI G L, ZHOU X H.Survey of data management techniques for artificial intelligence[J].Journal of Software, 2021, 32(1):21-40.(in Chinese) [6] 陈泽, 丁琳琳, 宋宝燕, 等.大规模动态图中概率游走约束的节点相似Top-k查询方法[J].计算机工程, 2021, 47(1):72-78, 86. CHEN Z, DING L L, SONG B Y, et al.Node similarity Top-k query method with probabilistic walk constraint in large-scale dynamic graphs[J].Computer Engineering, 2021, 47(1):72-78, 86.(in Chinese) [7] LAN H, BAO Z F, PENG Y W.A survey on advancing the DBMS query optimizer:cardinality estimation, cost model, and plan enumeration[J].Data Science and Engineering, 2021, 6(1):86-101. [8] CORMODE G.Synopses for massive data:samples, histograms, wavelets, sketches[J].Foundations and Trends in Databases, 2011, 4(1/2/3):1-294. [9] VENGEROV D, MENCK A C, ZAIT M, et al.Join size estimation subject to filter conditions[J].Proceedings of the VLDB Endowment, 2015, 8(12):1530-1541. [10] ESTAN C, NAUGHTON J F.End-biased samples for join cardinality estimation[C]//Proceedings of the 22nd International Conference on Data Engineering.Washington D.C., USA:IEEE Press, 2006:20-25. [11] GANGULY S, GIBBONS P B, MATIAS Y, et al.Bifocal sampling for skew-resistant join size estimation[C]//Proceedings of 1996 ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 1996:17-22. [12] CHEN Y, YI K.Two-level sampling for join size estimation[C]//Proceedings of 2017 ACM International Conference on Management of Data.New York, USA:ACM Press, 2017:123-134. [13] LI F, WU B, YI K, et al.Wander join and XDB:online aggregation via random walks[J].ACM SIGMOD Record, 2017, 46(1):33-40. [14] LIPTON R J, NAUGHTON J F.Query size estimation by adaptive sampling[J].Journal of Computer and System Sciences, 1995, 51(1):18-25. [15] LOHMAN G.Is query optimization a "solved" problem?[EB/OL].[2021-04-05].https://wp.sigmod.org/?p=1075. [16] LEIS V, GUBICHEV A, MIRCHEV A, et al.How good are query optimizers, really?[J].Proceedings of the VLDB Endowment, 2015, 9(3):204-215. [17] MOCKUS J, TIESIS V, ZILINSKAS A.The application of Bayesian methods for seeking the extremum[J].Towards Global Optimisation, 1978, 2(2):117-129. [18] BROCHU E, CORA V M, FREITAS N D.A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[EB/OL].[2021-04-05].http://haikufactory.com/files/bayopt.pdf. [19] SNOEK J, LAROCHELLE H, ADAMS R P.Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of Annual Conference on Neural Information Processing System.Cambridge, USA:MIT Press, 2012:2960-2968. [20] JONES D, SCHONLAU M, WELCH W.Efficient global optimization of expensive black-box functions[J].Journal of Global Optimization, 1998, 13(4):455-492. [21] RASMUSSEN C E, WILLIAMS C K I.Gaussian processes for machine learning[EB/OL].[2021-04-05].https://courses.cs.washington.edu/courses/cse591f/08au/GroupPapers/GPfML-Ch2.pdf. [22] SHAHRIARI B, SWERSKY K, WANG Z Y, et al.Taking the human out of the loop:a review of Bayesian optimization[J].Proceedings of the IEEE, 2016, 104(1):148-175. [23] LAN G J, TOMCZAK J M, ROIJERS D M, et al.Time efficiency in optimization with a Bayesian-Evolutionary algorithm[J].Swarm and Evolutionary Computation, 2022, 69:100970. |