[1] HE K M, ZHANG X Y, REN S Q, et al.Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1-10. [2] HOARE D, GRAHAM N, SCHÖN P J.The Irish Sea data-enhancement project:comparison of self-sampling and national data-collection programmes-results and experiences[J].ICES Journal of Marine Science, 2011, 68(8):1778-1784. [3] HU J, SHEN L, ALBANIE S, et al.Gather-excite:exploiting feature context in convolutional neural networks[EB/OL].[2021-06-29].https://arxiv.org/pdf/1810.12348.pdf. [4] TONY B, GIUSEPPE B, ANDREAS B, et al.Machine learning for clinical chemists[J].Clinical Chemistry, 2019, 65(11):1350-1356. [5] FARIS P D, GHALI W A, BRANT R, et al.Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses[J].Journal of Clinical Epidemiology, 2002, 55(2):184-191. [6] RUBIN J, PARVANEH S, RAHMAN A, et al.Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation using short single-lead ECG recordings[EB/OL].[2021-06-29].https://arxiv.org/ftp/arxiv/papers/1710/1710.05817.pdf. [7] 王海文.基于生成式对抗网络的数据增强方法研究[D].南京:南京邮电大学, 2019. WANG H W.Data augmentation based on generative adversarial networks[D].Nanjing:Nanjing University of Posts and Telecommunications, 2019.(in Chinese) [8] 肖小霞.行人重识别中数据增强技术研究[D].成都:电子科技大学, 2020. XIAO X X.Research on data enhancement technology in pedestrian recognition[D].Chengdu:University of Electronic Science and Technology of China, 2020.(in Chinese) [9] 暴雨轩, 芦天亮, 杜彦辉, 等.基于iResNet34模型和数据增强的深度伪造视频检测方法[J].计算机科学, 2021, 48(7):77-85. BAO Y X, LU T L, DU Y H, et al.Deepfake videos detection method based on iResNet34 model and data augmentation[J].Computer Science, 2021, 48(7):77-85.(in Chinese) [10] 闫敬文, 王超, 卢刚, 等.一种基于小波变换的SAR海洋图像数据增强系统[J].海洋学报, 2001, 23(5):130-135. YAN J W, WANG C, LU G, et al.A SAR ocean image data enhancement system based on wavelet transformation[J].Acta Oceanologica Sinica, 2001, 23(5):130-135.(in Chinese) [11] 程广涛, 巩家昌, 赵洪伟.基于膨胀卷积和稠密连接的烟雾识别方法[J].计算机工程, 2020, 46(4):253-259. CHENG G T, GONG J C, ZHAO H W.Smoke recognition method based on dilated convolution and dense connection[J].Computer Engineering, 2020, 46(4):253-259.(in Chinese) [12] 蒋芸, 张海, 陈莉, 等.基于卷积神经网络的图像数据增强算法[J].计算机工程与科学, 2019, 41(11):2007-2016. JIANG Y, ZHANG H, CHEN L, et al.An image data augmentation algorithm based on convolutional neural networks[J].Computer Engineering & Science, 2019, 41(11):2007-2016.(in Chinese) [13] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [14] BAYKULOV M, GAJEWSKI D.Prestack seismic data enhancement with partial Common-Reflection-Surface (CRS) stack[J].Geophysics, 2009, 74(3):49-58. [15] OBILIKWU P, OGBUJU E.A data model for enhanced data comparability across multiple organizations[J].Journal of Big Data, 2020, 7(1):1-25. [16] 薛丽霞, 钟欣, 汪荣贵, 等.基于深度特征融合的中低分辨率车型识别[J].计算机工程, 2019, 45(1):233-238, 245. XUE L X, ZHONG X, WANG R G, et al.Mid-low resolution vehicle type recognition based on deep feature fusion[J].Computer Engineering, 2019, 45(1):233-238, 245.(in Chinese) [17] 赵月爱, 陈俊杰, 吕伟.面向网络入侵检测的FHNN重抽样方法[J].计算机工程, 2011, 37(8):135-136, 139. ZHAO Y A, CHEN J J, LV W.FHNN resampling method for network intrusion detection[J].Computer Engineering, 2011, 37(8):135-136, 139.(in Chinese) [18] 周艳真, 查显煜, 兰健, 等.基于数据增强和深度残差网络的电力系统暂态稳定预测[J].中国电力, 2020, 53(1):22-31. ZHOU Y Z, ZHA X Y, LAN J, et al.Transient stability prediction of power systems based on deep residual network and data augmentation[J].Electric Power, 2020, 53(1):22-31.(in Chinese) [19] 张浩, 陈龙, 魏志强.基于数据增强和模型更新的异常流量检测技术[J].信息网络安全, 2020, 20(2):66-74. ZHANG H, CHEN L, WEI Z Q.Abnormal traffic detection technology based on data augmentation and model update[J].Netinfo Security, 2020, 20(2):66-74.(in Chinese) [20] 林荣来, 汤冰影, 陈明.适用于轴承故障诊断的数据增强算法[J].计算机工程与应用, 2021, 57(7):269-278. LIN R L, TANG B Y, CHEN M.Data augmentation algorithm for bearings faults diagnosis[J].Computer Engineering and Applications, 2021, 57(7):269-278.(in Chinese) [21] FAWAZ H I, FORESTIER G, WEBER J, et al.Data augmentation using synthetic data for time series classification with deep residual networks[EB/OL].[2021-06-29].https://arxiv.org/abs/1808.02455. [22] 熊忠阳, 陈若田, 张玉芳.一种有效的K-means聚类中心初始化方法[J].计算机应用研究, 2011, 28(11):4188-4190. XIONG Z Y, CHEN R T, ZHANG Y F.Effective method for cluster centers' initialization in K-means clustering[J].Application Research of Computers, 2011, 28(11):4188-4190.(in Chinese) [23] 王睿, 贺佳.随机抽样方法的SAS实现[J].中国卫生统计, 2007, 24(1):85, 93. WANG R, HE J.SAS implementation of random sampling method[J].Chinese Journal of Health Statistics, 2007, 24(1):85, 93.(in Chinese) [24] 邵志强.抽样调查中样本容量的确定方法[J].统计与决策, 2012(22):12-14. SHAO Z Q.A method for determining sample size in a sampling survey[J].Statistics & Decision, 2012(22):12-14.(in Chinese) [25] HUANG G, SUN Y, LIU Z, et al.Deep networks with stochastic depth[EB/OL].[2021-06-29].https://arxiv.org/abs/1603.09382. |