[1] 刘聪, 蒋克明, 周武平, 等.微滴技术的数字PCR研究现状及发展趋势[J].化学研究与应用, 2018, 30(7):1041-1047. LIU C, JIANG K M, ZHOU W P, et al.Research status and development trend of digital PCR with droplet technology[J].Chemical Research and Application, 2018, 30(7):1041-1047.(in Chinese) [2] 邱梦凯.数字PCR液滴识别方法的研究与实现[D].沈阳:沈阳理工大学, 2019. QIU M K.Research and realization of digital PCR droplet recognition method[D].Shenyang:Shenyang Ligong University, 2019.(in Chinese) [3] 刘松生, 袁浩均, 刘强, 等.液滴数字PCR芯片结果自动化读出平台的研究[J].现代电子技术, 2017, 40(18):1-6. LIU S S, YUAN H J, LIU Q, et al.Research on automatic result readout platform of droplet digital PCR chip[J].Modern Electronics Technique, 2017, 40(18):1-6.(in Chinese) [4] 刘聪, 董文飞, 蒋克明, 等.基于改进分水岭分割算法的致密荧光微滴识别[J].中国光学, 2019, 12(4):783-790. LIU C, DONG W F, JIANG K M, et al.Recognition of dense fluorescent droplets using an improved watershed segmentation algorithm[J].Chinese Optics, 2019, 12(4):783-790.(in Chinese) [5] MOROKOFF A, JONES J, NGUYEN H, et al.Serum microRNA is a biomarker for post-operative monitoring in glioma[J].Journal of Neuro-Oncology, 2020, 149(3):391-400. [6] KASTRATI Z, DALIPI F, IMRAN A S, et al.Sentiment analysis of students' feedback with NLP and deep learning:a systematic mapping study[J].Applied Sciences, 2021, 11(9):1-23. [7] PEKALA M, JOSHI N, LIU T Y A, et al.OCT segmentation via deep learning:a review of recent work[C]//Proceedings of Asian Conference on Computer Vision.Berlin, Germany:Springer, 2018:316-322. [8] OH S, CHANG A J, ASHAPURE A, et al.Plant counting of cotton from UAS imagery using deep learning-based object detection framework[J].Remote Sensing, 2020, 12(18):2981. [9] HU Z M, FANG W B, GOU T, et al.A novel method based on a Mask R-CNN model for processing dPCR images[J].Analytical Methods, 2019, 11(27):3410-3418. [10] ÇALLı E, MURPHY K, KURSTJENS S, et al.Deep learning with robustness to missing data:a novel approach to the detection of COVID-19[J].PLoS One, 2021, 16(7):1-10. [11] CHIU W H K, VARDHANABHUTI V, POPLAVSKIY D, et al.Detection of COVID-19 using deep learning algorithms on chest radiographs[J].Journal of Thoracic Imaging, 2020, 35(6):369-376. [12] DURVE M, BONACCORSO F, MONTESSORI A, et al.A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions[J].Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2021, 379(2208):1-10. [13] 邹贞贞.基于稀疏表示和深度学习的液滴图像超分辨重建[D].北京:中国科学院大学, 2018. ZOU Z Z.Droplet image super resolution based on sparse representation and deep learning[D].Beijing:University of Chinese Academy of Sciences, 2018.(in Chinese) [14] HU S P, GAO Y, NIU Z M, et al.Weakly supervised deep learning for COVID-19 infection detection and classification from CT images[J].IEEE Access, 2020, 8:118869-118883. [15] DUTA I C, LIU L, ZHU F, et al.Pyramidal convolution:rethinking convolutional neural networks for visual recognition[EB/OL].[2021-06-20].https://arxiv.org/abs/2006.11538. [16] HSIEH T I, LO Y C, CHEN H T, et al.One-shot object detection with co-attention and co-excitation[EB/OL].[2021-06-20].https://arxiv.org/abs/1911.12529. [17] ZHANG Q L, YANG Y B.SA-Net:shuffle attention for deep convolutional neural networks[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2021:2235-2239. [18] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [19] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [20] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-06-20].https://arxiv.org/abs/1804.02767. [21] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [22] HE K M, GKIOXARI G, DOLLÁR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2980-2988. [23] CAI Z W, VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6154-6162. |