[1] LI X H, LIU J F.A review of the research on two-dimensional human posture estimation[J].Modern Computer, 2019(22):33-37. [2] 刘红, 马杰, 柴玉晶.基于改进沙漏网络的人体姿态估计模型[J].激光与光电子学进展, 2021, 58(20):385-393. LIU H, MA J, CHAI Y J.Human pose estimation model based on improved hourglass network[J].Laser & Optoelectronics Progress, 2021, 58(20):385-393.(in Chinese) [3] DANTONE M, GALL J, LEISTNER C, et al.Human pose estimation using body parts dependent joint regressors[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2013:3041-3048. [4] 罗梦诗, 徐杨, 叶星鑫.融入双注意力的高分辨率网络人体姿态估计[J].计算机工程, 2022, 48(2):314-320. LUO M S, XU Y, YE X X.Human pose estimation using high resolution network with dual attention[J].Computer Engineering, 2022, 48(2):314-320.(in Chinese) [5] 陈永康, 宋亚男, 何嘉俊, 等.基于深度学习的动物姿态估计和状态评估研究[J].电子世界, 2019(5):47-48. CHEN Y K, SONG Y N, HE J J, et al.Research on animal posture estimation and state evaluation based on deep learning[J].Electronics World, 2019(5):47-48.(in Chinese) [6] SAPP B, TASKAR B.MODEC:multimodal decomposable models for human pose estimation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2013:3674-3681. [7] BIGGS B, RODDICK T, FITZGIBBON A, et al.Creatures great and SMAL:recovering the shape and motion of animals from video[C]//Proceedings of Asian Conference on Computer Vision.Berlin, Germany:Springer, 2019:3-19. [8] HOFFMAN J, TZENG E, PARK T, et al.CyCADA:cycle-consistent adversarial domain adaptation[EB/OL].[2021-11-10].https://arxiv.org/abs/1711.03213. [9] TREMBLAY J, PRAKASH A, ACUNA D, et al.Training deep networks with synthetic data:bridging the reality gap by domain randomization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2018:1-10. [10] CHANG A X, FUNKHOUSER T, GUIBAS L, et al.ShapeNet:an information-rich 3D model repository[EB/OL].[2021-12-10].http://www.shapenet.orgAngel. [11] CAO J K, TANG H Y, FANG H S, et al.Cross-domain adaptation for animal pose estimation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:9497-9506. [12] ZUFFI S, KANAZAWA A, BLACK M J.Lions and tigers and bears:capturing non-rigid, 3D, articulated shape from images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3955-3963. [13] VAROL G, ROMERO J, MARTIN X, et al.Learning from synthetic humans[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4627-4635. [14] TOSHEV A, SZEGEDY C.DeepPose:human pose estimation via deep neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2013:1653-1660. [15] CHEN Y L, WANG Z C, PENG Y X, et al.Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7103-7112. [16] NEWELL A, YANG K Y, DENG J.Stacked hourglass networks for human pose estimation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:483-499. [17] HUA G G, LI L H, LIU S G.Multipath affinage stacked-hourglass networks for human pose estimation[J].Frontiers of Computer Science, 2020, 14(4):1-12. [18] 王琦, 郑飂默, 王诗宇, 等.一种基于轻量级堆叠沙漏网络的机械臂姿态估计方法[J].小型微型计算机系统, 2022, 43(11):2370-2374. WANG Q, ZHENG L M, WANG S Y, et al.Robotic arm pose estimation method based on lightweight stacked hourglass network[J].Journal of Chinese Computer Systems, 2022, 43(11):2370-2374.(in Chinese) [19] HU J, SHEN L, ALBANIE S, et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [20] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [21] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[EB/OL].[2021-11-10].https://arxiv.org/abs/1512.03385. [22] TIELEMAN T, HINTON G.RMSprop:divide the gradient by a running average of its recent magnitude[EB/OL].[2021-11-10].https://amara.org/videos/vrXNiLBHyW92/en/180511. [23] MU J T, QIU W C, HAGER G, et al.Learning from synthetic animals[EB/OL].[2021-11-10].https://arxiv.org/abs/1912.08265. [24] ZHU J Y, PARK T, ISOLA P, et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2242-2251. [25] LI Y S, YUAN L, VASCONCELOS N.Bidirectional learning for domain adaptation of semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:6929-6938. |