[1] KIM J, LEE J K, LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1646-1654. [2] LEDIG C, THEIS L, HUSZÁR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:105-114. [3] LIM B, SON S, KIM H.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1132-1140. [4] WANG X T, YU K, WU S X.ESRGAN:enhanced super-resolution generative adversarial networks[C]//Proceedings of 2018 European Conference on Computer Vision.Berlin, Germany:Springer, 2018:63-79. [5] LIU Z, SUN M J, ZHOU T H, et al.Rethinking the value of network pruning[EB/OL].[2021-08-09].https://arxiv.org/abs/1810.05270. [6] WEI D Y, WANG Z W.Multi-scale channel network based on filer pruning for image super-resolution[J].Optik, 2021, 236:1-10. [7] CHEN S, HUANG K, LI B W, et al.Adaptive hybrid composition based super-resolution network via fine-grained channel pruning[C]//Proceedings of 2020 European Conference on Computer Vision.Berlin, Germany:Springer, 2020:119-135. [8] FRANKLE J, CARBIN M.The lottery ticket hypothesis:finding sparse, trainable neural networks[EB/OL].[2021-08-09].https://arxiv.org/abs/1803.03635. [9] DONG C, LOY C C, HE K M, et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [10] GUO Y, CHEN J, WANG J D, et al.Closed-loop matters:dual regression networks for single image super-resolution[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:5406-5415. [11] LIU J, ZHANG W J, TANG Y T, et al.Residual feature aggregation network for image super-resolution[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2356-2365. [12] YANG F Z, YANG H, FU J L, et al.Learning texture transformer network for image super-resolution[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:5790-5799. [13] HAN S, LIU X Y, MAO H Z, et al.EIE:efficient inference engine on compressed deep neural network[J].ACM SIGARCH Computer Architecture News, 2016, 44(3):243-254. [14] HAN S, POOL J, TRAN J, et al.Learning both weights and connections for efficient neural networks[EB/OL].[2021-08-09].https://arxiv.org/pdf/1506.02626.pdf. [15] LOUIZOS C, WELLING M, KINGMA D P.Learning sparse neural networks through L0 regularization[EB/OL].[2021-08-09].https://arxiv.org/abs/1712.01312. [16] HAN S, MAO H Z, DALLY W J.Deep compression:compressing deep neural network with pruning, trained quantization and huffman coding[EB/OL].[2021-08-09].https://arxiv.org/pdf/1510.00149.pdf. [17] TARTAGLIONE E, LEPSØY S, FIANDROTTI A, et al.Learning sparse neural networks via sensitivity-driven regularization[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.Cambridge, USA:MIT Press, 2018:3882-3892. [18] MAO H Z, HAN S, POOL J, et al.Exploring the regularity of sparse structure in convolutional neural networks[EB/OL].[2021-08-09].https://arxiv.org/pdf/1705.08922.pdf. [19] GUO Y W, YAO A B, CHEN Y R.Dynamic network surgery for efficient DNNs[EB/OL].[2021-08-09].https://arxiv.org/pdf/1608.04493.pdf. [20] LUGMAYR A, DANELLJAN M, TIMOFTE R.NTIRE 2020 challenge on real-world image super-resolution:methods and results[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2058-2076. [21] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of British Machine Vision Conference.Berlin, Germany:Springer, 2012:135. [22] ZEYDE R, ELAD M, PROTTER M.On single image scale-up using sparse-representations[C]//Proceedings of International Conference on Curves and Surfaces.Berlin, Germany:Springer, 2012:711-730. [23] MARTIN D, FOWLKES C, TAL D, et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of 2001 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2001:416-423. [24] HE K M, ZHANG X Y, REN S Q, et al.Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1026-1034. [25] KINGMA D, BA J.Adam:a method for stochastic optimization[EB/OL].[2021-08-09].https://arxiv.org/pdf/1412.6980.pdf. |