[1] 李珑, 刘凯, 李玲.基于目标检测的时空上下文跟踪算法[J].计算机工程, 2018, 44(9):263-268, 273. LI L, LIU K, LI L.Spatial-temporal context tracking algorithm based on target detection[J].Computer Engineering, 2018, 44(9):263-268, 273.(in Chinese) [2] 任立成, 杨嘉棋, 魏宇星, 等.基于特征融合与双模板嵌套更新的孪生网络跟踪算法[J].计算机工程, 2021, 47(7):239-248. REN L C, YANG J Q, WEI Y X, et al.Tracking algorithm using siamese network based on feature fusion and dual-template nested update[J].Computer Engineering, 2021, 47(7):239-248.(in Chinese) [3] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al.Fully-convolutional siamese networks for object tracking[EB/OL].[2022-02-01].https://arxiv.org/pdf/1606.09549.pdf. [4] LI B, YAN J J, WU W, et al.High performance visual tracking with siamese region proposal network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8971-8980. [5] LI B, WU W, WANG Q, et al.SiamRPN:evolution of siamese visual tracking with very deep networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:4277-4286. [6] ZHANG Z P, PENG H W.Deeper and wider siamese networks for real-time visual tracking[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:4586-4595. [7] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [8] XU Y D, WANG Z Y, LI Z X, et al.SiamFC++:towards robust and accurate visual tracking with target estimation guidelines[C]//Proceedings of Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2020:12549-12556. [9] GUO D Y, WANG J, CUI Y, et al.SiamCAR:siamese fully convolutional classification and regression for visual tracking[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:6268-6276. [10] CHEN X, YAN B, ZHU J W, et al.Transformer tracking[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:8122-8131. [11] YAN B, PENG H W, FU J L, et al.Learning spatio-temporal Transformer for visual tracking[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2022:10428-10437. [12] WANG N, ZHOU W G, WANG J, et al.Transformer meets tracker:exploiting temporal context for robust visual tracking[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:1571-1580. [13] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2017:5998-6010. [14] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780. [15] CARION N, MASSA F, SYNNAEVE G, et al.End-to-end object detection with Transformers[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:213-229. [16] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.An image is worth 16×16 words:Transformers for image recognition at scale[C]//Proceedings of International Conference on Learning Representations.Washington D.C., USA:[s.n.], 2020:1-9. [17] WANG W H, XIE E Z, LI X, et al.Pyramid vision Transformer:a versatile backbone for dense prediction without convolutions[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2022:548-558. [18] LIU Z, LIN Y T, CAO Y, et al.Swin Transformer:hierarchical vision Transformer using shifted windows[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2022:9992-10002. [19] Tan M X, Le Q V.EfficientNetV2:smaller models and faster training[EB/OL].[2022-02-01].https://arxiv.org/abs/2104.00298. [20] HUANG L H, ZHAO X, HUANG K Q.GOT-10k:a large high-diversity benchmark for generic object tracking in the wild[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5):1562-1577. [21] FAN H, LIN L T, YANG F, et al.LaSOT:a high-quality benchmark for large-scale single object tracking[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:5369-5378. [22] LIN T Y, MAIRE M, BELONGIE S, et al.Microsoft COCO:common objects in context[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:740-755. [23] MÜLLER M, BIBI A, GIANCOLA S, et al.TrackingNet:a large-scale dataset and benchmark for object tracking in the wild[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:310-327. [24] VOIGTLAENDER P, LUITEN J, TORR P H S, et al.Siam R-CNN:visual tracking by re-detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:6577-6587. [25] DANELLJAN M, VAN GOOL L, TIMOFTE R.Probabilistic regression for visual tracking[C]//Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:7181-7190. [26] ZHANG Z P, PENG H W, FU J L, et al.Ocean:object-aware anchor-free tracking[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:771-787. [27] BHAT G, DANELLJAN M, VAN GOOL L, et al.Learning discriminative model prediction for tracking[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2020:6181-6190. [28] DANELLJAN M, BHAT G, KHAN F S, et al.ATOM:accurate tracking by overlap maximization[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:4655-4664. [29] MUELLER M, SMITH N, GHANEM B.A benchmark and simulator for UAV tracking[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:445-461. [30] WU Y, LIM J, YANG M H.Online object tracking:a benchmark[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2013:2411-2418. [31] GALOOGAHI H K, FAGG A, HUANG C, et al.Need for speed:a benchmark for higher frame rate object tracking[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:1125-1134. |