[1] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems.New York,USA:ACM Press,2012:1106-1114. [2] O'SHEA T J,CORGAN J,CLANCY T C.Convolutional radio modulation recognition networks[C]//Proceedings of International Conference on Engineering Applications of Neural Networks.Berlin,Germany:Springer,2016:213-226. [3] BAI Pengyuan,XU Hua,SUN Li.A recognition algorithm for modulation schemes by convolution neural network and spectrum texture[J].Journal of Northwestern Polytechnical University,2019,37(4):816-823.(in Chinese)白芃远,许华,孙莉.基于卷积神经网络与时频图纹理信息的信号调制方式分类方法[J].西北工业大学学报,2019,37(4):816-823. [4] ZHANG Zufan,WANG Chun,GAN Chenquan,et al.Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD[J].IEEE Transactions on Signal and Information Processing over Networks,2019,5(3):469-478. [5] LI F F,FERGUS R,PERONA P.One-shot learning of object categories[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):594-611. [6] MEHROTRA A,DUKKIPATI A.Generative adversarial residual pairwise networks for one shot learning[EB/OL].[2020-04-03].https://arxiv.org/abs/1703.08033. [7] DIXIT M,KWITT R,NIETHAMMER M,et al.AGA:attribute guided augmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:7455-7463. [8] HARIHARAN B.Low-shot visual recognition by shrinking and hallucinating features[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:3037-3046. [9] FINN C.Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning.New York,USA:ACM Press,2017:1126-1135. [10] SANTORO A.Meta-learning with memory-augmented neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning.New York,USA:ACM Press,2016:1842-1850. [11] RAVI S,LAROCHELLE H.Optimization as a model for few-shot learning[EB/OL].[2020-04-03].https://blog.csdn.net/weixin_37589575/article/details/96995985. [12] KOCH G,ZEMEL R,SALAKHUTDINOV R.Siamese neural networks for one-shot image recognition[EB/OL].[2020-04-03].http://www.cs.utoronto.ca/~gkoch/files/msc-thesis. [13] VINYALS O.Matching networks for one shot learning[C]//Proceedings of the 30th Conference on Neural Information Processing Systems.Washington D.C.,USA:IEEE Press,2016:3630-3638. [14] SNELL J.Prototypical networks for few-shot learning[C]//Proceedings of the 31st Conference on Neural Information Processing Systems.Washington D.C.,USA:IEEE Press,2017:4080-4090. [15] SUNG F.Learning to compare:relation network for few-shot learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1199-1208. [16] WANG Peng.Multi-attention network for one shot learning[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:6212-6220. [17] HILLIARD N,HODAS N O,CORLEY C D.Dynamic input structure and network assembly for few-shot learning[EB/OL].[2020-04-03].https://arxiv.org/abs/1708.06819v1. [18] BROMLEY J,GUYON I,LECUN Y,et al.Signature verification using a Siamese time delay neural network[J].International Journal of Pattern Recognition and Artificial Intelligence,1993,7(4):669-688. [19] O'SHEA T J,WEST N.Radio machine learning dataset generation with GNU radio[C]//Proceedings of GNU Radio Conference.Washington D.C.,USA:IEEE Press,2016:1-7. [20] KINGMA D P,BA J.Adam:a method for stochastic optimization[EB/OL].[2020-04-03].https://www.oalib.com/paper/4068193. [21] BISHOP C M.Pattern recognition and machine learning(information science and statistics)[M].Berlin,Germany:Springer,2006. [22] ZHOU Jiang.Research and implementation of communication signal modulation recognition based on neural network[D].Chengdu:University of Electronic Science and Technology,2018.(in Chinese)周江.基于神经网络的通信信号调制识别研究及实现[D].成都:电子科技大学,2018. |