1 |
王景林, 吴宜霖. 类案检索制度在司法实践中的应用研究. 法制博览, 2022, (2): 100- 102.
|
|
WANG J L, WU Y L. Research on the application of similar case retrieval system in judicial practice. Legality Vision, 2022, (2): 100- 102.
|
2 |
|
3 |
CONNEAU A, KIELA D, SCHWENK H, et al. Supervised learning of universal sentence representations from natural language inference data[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Philadelphia, USA: Association for Computational Linguistics, 2017: 670-680.
|
4 |
|
5 |
DAS D, SMITH N A. Paraphrase identification as probabilistic quasi-synchronous recognition[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Philadelphia, USA: Association for Computational Linguistics, 2009: 468-476.
|
6 |
卜质琼, 郑波尽. 基于LDA模型的Ad hoc信息检索方法研究. 计算机应用研究, 2015, 32 (5): 1369- 1372.
doi: 10.3969/j.issn.1001-3695.2015.05.022
|
|
BU Z Q, ZHENG B J. Ad hoc information retrieval method based on LDA. Application Research of Computers, 2015, 32 (5): 1369- 1372.
doi: 10.3969/j.issn.1001-3695.2015.05.022
|
7 |
吕正东, 李航. 深度匹配学习在语言匹配中的应用. 中国计算机学会通讯, 2015, 8 (8): 30- 38.
|
|
LÜ Z D, LI H. Apply deep matching learning in language matching. Communication of China Computer Federation, 2015, 8 (8): 30- 38.
|
8 |
HUANG P S, HE X D, GAO J F, et al. Learning deep structured semantic models for web search using click through data[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2013: 2333-2338.
|
9 |
SHEN Y L, HE X D, GAO J F, et al. A latent semantic model with convolutional-pooling structure for information retrieval[C]//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York, USA: ACM Press, 2014: 101-110.
|
10 |
PANG L A, LAN Y Y, GUO J F, et al. Text matching as image recognition[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 2793-2799.
|
11 |
|
12 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of 2019 Conference of the North American Chapter of Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Philadelphia, USA: Association for Computational Linguistics, 2019: 4171-4186.
|
13 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
14 |
|
15 |
|
16 |
PEINELT N, NGUYEN D, LIAKATA M. tBERT: topic models and BERT joining forces for semantic similarity detection[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 7047-7055.
|
17 |
|
18 |
JAWAHAR G, SAGOT B, SEDDAH D. What does BERT learn about the structure of language?[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 3651-3657.
|
19 |
|
20 |
PALANGI H, DENG L, SHEN Y L, et al. Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. ACM Transactions on Audio, Speech, and Language Processing, 2016, 24 (4): 694- 707.
doi: 10.1109/TASLP.2016.2520371
|
21 |
HU B T, LU Z D, LI H, et al. Convolutional neural network architectures for matching natural language sentences[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2014: 2042-2050.
|
22 |
|
23 |
|
24 |
HONG Z L, ZHOU Q F, ZHANG R, et al. Legal feature enhanced semantic matching network for similar case matching[C]//Proceedings of 2020 International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2020: 1-8.
|
25 |
PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 1532-1543.
|