[1] 边星, 晋良海, 陈雁高, 等.施工作业人员佩戴安全帽行为意向研究[J].中国安全科学学报, 2016, 26(11):43-48. BIAN X, JIN L H, CHEN Y G, et al.Research on workers' behavioral intention of wearing safety helmet[J].China Safety Science Journal, 2016, 26(11):43-48.(in Chinese) [2] CHEN S B, TANG W H, JI T Y, et al.Detection of safety helmet wearing based on improved faster R-CNN[C]//Proceedings of International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2020:1-7. [3] 许凯, 邓超.基于改进YOLOv3的安全帽佩戴识别算法[J].激光与光电子学进展, 2021, 58(6):300-307. XU K, DENG C.Research on helmet wear identification based on improved YOLOv3[J].Laser & Optoelectronics Progress, 2021, 58(6):300-307.(in Chinese) [4] 郭继峰, 孙文博, 庞志奇, 等.一种改进YOLOv4的交通标志识别算法[J].小型微型计算机系统, 2022, 43(7):1471-1476. GUO J F, SUN W B, PANG Z Q, et al.Improved traffic sign recognition algorithm for Yolov4[J].Journal of Chinese Mini-Micro Computer Systems, 2022, 43(7):1471-1476.(in Chinese) [5] 赵睿, 刘辉, 刘沛霖, 等.基于改进YOLOv5s的安全帽检测算法[J/OL].北京航空航天大学学报:1-16[2021-11-23].https://doi-org-s.z.library.sh.cn/10.13700/j.bh.1001-5965.2021.0595. ZHAO R, LIU H, LIU P L, et al.Research on safety helmet detection algorithm based on improved YOLOv5s[J/OL].Journal of Beijing University of Aeronautics and Astronautics:1-16[2021-11-23].https://doi-org-s.z.library.sh.cn/10.13700/j.bh.1001-5965.2021.0595.(in Chinese) [6] 徐先峰, 赵万福, 邹浩泉, 等.基于MobileNet-SSD的安全帽佩戴检测算法[J].计算机工程, 2021, 47(10):298-305, 313. XU X F, ZHAO W F, ZOU H Q, et al.Detection algorithm of safety helmet wear based on MobileNet-SSD[J].Computer Engineering, 2021, 47(10):298-305, 313.(in Chinese) [7] CHENG R, HE X W, ZHENG Z L, et al.Multi-scale safety helmet detection based on SAS-YOLOv3-tiny[J].Applied Sciences, 2021, 11(8):3652-3662. [8] WANG H X, GE H Y, LI M X.PFG-YOLO:a safety helmet detection based on YOLOv4[C]//Proceedings of the 5th Information Technology, Networking, Electronic and Automation Control Conference.Washington D.C., USA:IEEE Press, 2021:1242-1246. [9] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [10] 张有波, 郭威, 周悦, 等.基于多粒度剪枝的水下遗迹实时目标检测[J].激光与光电子学进展, 2021, 58(14):286-295. ZHANG Y B, GUO W, ZHOU Y, et al.Real-time target detection of underwater relics based on multigranularity pruning[J].Laser & Optoelectronics Progress, 2021, 58(14):286-295.(in Chinese) [11] 韦越, 陈世超, 朱凤华, 等.基于稀疏正则化的卷积神经网络模型剪枝方法[J].计算机工程, 2021, 47(10):61-66. WEI Y, CHEN S C, ZHU F H, et al.Pruning method for convolutional neural network models based on sparse regularization[J].Computer Engineering, 2021, 47(10):61-66.(in Chinese) [12] 杨民杰, 梁亚玲, 杜明辉.基于参数子空间和缩放因子的YOLO剪枝算法[J].计算机工程, 2021, 47(2):111-117. YANG M J, LIANG Y L, DU M H.YOLO pruning algorithm based on parameter subspace and scaling factor[J].Computer Engineering, 2021, 47(2):111-117.(in Chinese) [13] YOO H B, PARK M S, KIM S H.Real time face detection method using TensorRT and SSD[J].KIPS Transactions on Software and Data Engineering, 2020, 9(10):323-328. [14] 周立君, 刘宇, 白璐, 等.使用TensorRT进行深度学习推理[J].应用光学, 2020, 41(2):337-341. ZHOU L J, LIU Y, BAI L, et al.Using TensorRT for deep learning and inference applications[J].Journal of Applied Optics, 2020, 41(2):337-341.(in Chinese) [15] 张倩宇, 贾维, 彭博.基于深度学习的三叉神经区域自动检测及TensorRT加速[J].太赫兹科学与电子信息学报, 2021, 19(6):1065-1069. ZHANG Q Y, JIA W, PENG B.Automatic detection of trigeminal neural region based on deep learning and TensorRT acceleration[J].Journal of Terahertz Science and Electronic Information Technology, 2021, 19(6):1065-1069.(in Chinese) [16] DEBAUCHE O, SAD M, MAHMOUDI S A, et al.Edge computing and artificial intelligence for real-time poultry monitoring[J].Procedia Computer Science, 2020, 175(8):534-541. [17] YU S, HE Y, SHAO M.Real-time target detection based on jetson nano and YOLOv3-Tiny[J].International Core Journal of Engineering, 2021, 7(2):378-383. [18] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2022-02-15].https://arxiv.org/abs/2004.10934. [19] 胡嘉沛, 李震, 黄河清, 等.采用改进YOLOv4-Tiny模型的柑橘木虱识别[J].农业工程学报, 2021, 37(17):197-203. HU J P, LI Z, HUANG H Q, et al.Citrus psyllid detection based on improved YOLOv4-Tiny model[J].Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17):197-203.(in Chinese) [20] LI X, PAN J, XIE F, et al.Fast and accurate green pepper detection in complex backgrounds via an improved YOLOv4-Tiny model[J].Computers and Electronics in Agriculture, 2021, 191(11):503-513. [21] LI H, LI C, LI G, et al.A real-time table grape detection method based on improved YOLOv4-Tiny network in complex background[J].Biosystems Engineering, 2021, 22(8):347-359. [22] GUO C, LV X L, ZHANG Y, et al.Improved YOLOv3-Tiny network for real-time electronic component detection[J].Scientific Reports, 2021, 11(9):44-56. [23] YANG Q F, ZHANG Z Q, YAN L, et al.Lightweight bird's nest location recognition method based on YOLOv3-Tiny[C]//Proceedings of IEEE International Conference on Electrical Engineering and Mechatronics Technology.Washington D.C., IEEE Press, 2021:402-405. [24] IOFFE S, SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning.New York, USA:ACM Press, 2015:448-456. [25] 张杰妹, 杨词慧.基于RV-FCN的CT肝脏影像自动分割算法[J].计算机工程, 2019, 45(7):258-263. ZHANG J M, YANG C H.Automatic segmentation algorithm of CT liver image based on RV-FCN[J].Computer Engineering, 2019, 45(7):258-263.(in Chinese) [26] HE Y, DONG X Y, KANG G L, et al.Asymptotic soft filter pruning for deep convolutional neural networks[J].IEEE Transactions on Cybernetics, 2020, 50(8):3594-3604. [27] LIU Z, LI J G, SHEN Z Q, et al.Learning efficient convolutional networks through network slimming[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2755-2763. |