[1] LU Hongtao,ZHANG Qinchuan.Applications of deep convolutional neural network in computer vision[J].Journal of Data Acquisition & Processing,2016,31(1):1-17.(in Chinese)卢宏涛,张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理,2016,31(1):1-17. [2] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [3] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:580-587. [4] JIANG Feng,GU Qing,HAO Huizhen,et al.Survey on content-based image segmentation methods[J].Journal of Software,2017,28(1):160-183.(in Chinese)姜枫,顾庆,郝慧珍,等.基于内容的图像分割方法综述[J].软件学报,2017,28(1):160-183. [5] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [6] RAGHU M,POOLE B,KLEINBERG J,et al.On the expressive power of deep neural networks[EB/OL].[2019-11-10].https://arxiv.org/abs/1606.05336. [7] YANG Y,NEWSAM S.Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.New York,USA:ACM Press,2010:270-279. [8] ZHU Qiqi,ZHONG Yanfei,ZHAO Bei,et al.Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J].IEEE Geoscience and Remote Sensing Letters,2016,13(6):747-751. [9] ZHANG Min,LIU Lixiong,JIA Yunde.An outdoor scene understanding method based on ensemble classification of image regions[J].Journal of Image and Graphics,2004,9(12):1443-1448.(in Chinese)张敏,刘利雄,贾云得.一种基于图像区域系综分类的室外场景理解方法[J].中国图象图形学报,2004,9(12):1443-1448. [10] LI Guandong,ZHANG Chunju,WANG Mingkai,et al.Transfer learning using convolutional neural network for scene classification within high resolution remote sensing image[J].Science of Surveying and Mapping,2019,44(4):116-123,174.(in Chinese)李冠东,张春菊,王铭恺,等.卷积神经网络迁移的高分影像场景分类学习[J].测绘科学,2019,44(4):116-123,174. [11] MENG Qingxiang,WU Xuan.Scene classification of high-resolution remote sensing image based on deep convolution neural network[J].Bulletin of Surveying and Mapping,2019(7):17-22.(in Chinese)孟庆祥,吴玄.基于深度卷积神经网络的高分辨率遥感影像场景分类[J].测绘通报,2019(7):17-22. [12] ARANDJELOVIC R,GRONAT P,TORⅡ A,et al.NetVLAD:CNN architecture for weakly supervised place recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(6):1437-1451. [13] LI Erzhu,XIA Junshi,DU Peijun,et al.Integrating multilayer features of convolutional neural networks for remote sensing scene classification[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(10):5653-5665. [14] BA L J,CARUANA R.Do deep nets really need to be deep?[J].Advances in Neural Information Processing Systems,2014,3:2654-2662. [15] HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[EB/OL].[2019-11-20].https://arxiv.org/abs/1503.02531. [16] ROMERO A,BALLAS N,KAHOU S E,et al.FitNets:hints for thin deep nets[EB/OL].[2019-11-20].http://refbase.cvc.uab.es/files/RBK2015.pdf. [17] XU Z,HSU Y C,HUANG J W.Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks[EB/OL].[2019-11-20].https://arxiv.org/abs/1709.00513. [18] FURLANELLO T,LIPTON Z,TSCHANNEN M,et al.Born again neural networks[EB/OL].[2019-11-20].https://arxiv.org/abs/1805.04770. [19] KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[EB/OL].[2019-11-20].https://github.com/DavidEscott/ML_Project/raw/master/rbm/learning-features-2009-TR.pdf. [20] HOWARD A,ZHU M L,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2019-11-20].https://arxiv.org/abs/1704.04861. |