[1] QIU J, WANG J, YAO S, et al.Going deeper with embedded FPGA platform for convolutional neural network[C]//Proceedings of 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.New York, USA:ACM Press, 2016:26-35. [2] SHEN Y R, HAN T, YANG Q, et al.CS-CNN:enabling robust and efficient convolutional neural networks inference for Internet-of-things applications[J].IEEE Access, 2018, 6:13439-13448. [3] ZHANG X Y, ZHOU X Y, LIN M X, et al.ShuffleNet:an extremely efficient convolutional neural network for mobile device[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6848-6856. [4] 崔小乐, 陈红英, 崔小欣, 等.一种软硬件协同设计工具原型及其设计描述方法[J].微电子学与计算机, 2007, 24(6):28-30. CUI X L, CHEN H Y, CUI X X, et al, A prototype of software and hardware collaborative design tool and its design description method[J].Microelectronics and Computer, 2007, 24(6):28-30.(in Chinese) [5] ABDELOUAHAB K, BOURRASSET C, PELCAT M, et al.A holistic approach for optimizing DSP block utilization of a CNN implementation on FPGA[C]//Proceedings of the 10th International Conference on Distributed Smart Camera.Paris, France:[s.n.], 2016:69-75. [6] WU B C, IANDOLA F, JIN P H, et al.SqueezeDet:unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:446-454. [7] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1251-1258. [8] ZHANG C, SUN G, FANG Z, et al.Caffeine:towards uniformed representation and acceleration for deep convolutional neural networks[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 46(9):2231-2321. [9] DESOLI G, CHAWLA N, BOESCH T, et al.Deep convolutional neural network SoC in FD-SOI 28 nm for intelligent embedded systems[C]//Proceedings of 2017 Asian Solid-State Circuits Conference.Washington D.C., USA:IEEE Press, 2017:1-5. [10] JACOB B, KLIGYS S, CHEN B, et al.Quantization and training of neural networks for efficient integer-arithmetic-only inference[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1-5. [11] KRISHNAMOORTHI R.Quantizing deep convolutional networks for efficient inference:a whitepaper[EB/OL].[2020-05-20].https://arxiv.org/pdf/1806.08342v1.pdf. [12] HU J, SHEN L, ALBANIE S, et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [13] PEEMEN M, SETIO A A A, MESMAN B, et al.Memory-centric accelerator design for convolutional neural networks[C]//Proceedings of the 10th International Conference on Distributed Smart Camera.Washington D.C., USA:IEEE Press, 2013:1-5. [14] 卢冶, 陈瑶, 李涛, 等.面向边缘计算的嵌入式FPGA卷积神经网络构建方法[J].计算机研究与发展, 2018, 55(3):551-562. LU Z, CHEN Y, LI T, et al.Embedded FPGA convolutional neural network construction method for edge computing[J].Computer Research and Development, 2018, 55(3):551-562.(in Chinese) [15] 李欣瑶, 刘飞阳, 文鹏程, 等.卷积神经网络的软硬件协同加速技术[J].航空兵器, 2021, 28(3):99-104. LI X Y, LIU F Y, WEN P C, et al.Convolutional neural network software and hardware coacceleration technology[J].Aircraft Weapon, 2021, 28(3):99-104.(in Chinese) [16] SANKARADAS M, JAKKULA V, CADAMBI S, et al.A massively parallel coprocessor for convolutional neural networks[C]//Proceedings of the 20th IEEE International Conference on Application-Specific Systems, Architectures and Processors.Washington D.C., USA:IEEE Press, 2009:53-60. [17] CADAMBI S, MAJUMDAR A, BECCHI M, et al.A programmable parallel accelerator for learning and classification[C]//Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques.Vienna, Austria:[s.n.], 2010:273-284. [18] OVTCHAROV K, RUWASE O, KIM J Y, et al.Accelerating deep convolutional neural networks using specialized hardware[J].Microsoft Research Whitepaper, 2015, 2(11):11-14. [19] MOTAMEDI M, GYSEL P, AKELLA V, et al.Design space exploration of FPGA-based deep convolutional neural networks[C]//Proceedings of the 21st Asia and South Pacific Design Automation Conference.Macao, China:[s.n.], 2016:575-580. [20] HOWARD A, SANDLER M, CHEN B, et al.Searching for MobileNetV3[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2020:1-5. [21] REDMON J, FARHADI A.Yolov3:an incremental improvement[EB/OL].[2020-05-20].https://arxiv.org/pdf/1804.02767v1.pdf. |