1 |
|
|
|
2 |
KAYE S A, LEWIS I, FREEMAN J. Comparison of self-report and objective measures of driving behavior and road safety: a systematic review. Journal of Safety Research, 2018, 65, 141- 151.
doi: 10.1016/j.jsr.2018.02.012
|
3 |
纪辰瑾. 基于卷积神经网络的驾驶员行为检测方法的研究[D]. 长春: 吉林大学, 2021.
|
|
JI C J. Research on driver behavior detection method based on convolutional neural network[D]. Changchun: Jilin University, 2021. (in Chinese)
|
4 |
HUANG W, LIU X, LUO M Y, et al. Video-based abnormal driving behavior detection via deep learning fusions. IEEE Access, 2019, 7, 64571- 64582.
doi: 10.1109/ACCESS.2019.2917213
|
5 |
HU Y C, LU M Q, LU X B. Spatial-temporal fusion convolutional neural network for simulated driving behavior recognition[C]//Proceedings of the 15th International Conference on Control, Automation, Robotics and Vision. Washington D. C., USA: IEEE Press, 2018: 1271-1277.
|
6 |
CHIOU C Y, WANG W C, LU S C, et al. Driver monitoring using sparse representation with part-based temporal face descriptors. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 346- 361.
doi: 10.1109/TITS.2019.2892155
|
7 |
|
|
|
8 |
ZHANG J, WU Z C, LI F, et al. Attention-based convolutional and recurrent neural networks for driving behavior recognition using smartphone sensor data. IEEE Access, 2019, 7, 148031- 148046.
doi: 10.1109/ACCESS.2019.2932434
|
9 |
KANG H B. Various approaches for driver and driving behavior monitoring: a review[C]//Proceedings of IEEE International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2014: 616-623.
|
10 |
胡习之, 黄冰瑜. 基于面部特征分析的疲劳驾驶检测方法. 科学技术与工程, 2021, 21(4): 1629- 1636.
|
|
HU X Z, HUANG B Y. Fatigue driving detection system based on face feature analysis. Science Technology and Engineering, 2021, 21(4): 1629- 1636.
|
11 |
ELASSAD A, ELAMRANI Z, HAJAR M, et al. The application of machine learning techniques for driving behavior analysis: a conceptual framework and a systematic literature review. Engineering Applications of Artificial Intelligence, 2020, 87(10): 103312.
|
12 |
XING Y, LV C, WANG H J, et al. Driver activity recognition for intelligent vehicles: a deep learning approach. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5379- 5390.
doi: 10.1109/TVT.2019.2908425
|
13 |
郑伟成, 李学伟, 刘宏哲, 等. 基于深度学习的疲劳驾驶检测算法. 计算机工程, 2020, 46(7): 21- 29.
URL
|
|
ZHENG W C, LI X W, LIU H Z, et al. Fatigue driving detection algorithm based on deep learning. Computer Engineering, 2020, 46(7): 21- 29.
URL
|
14 |
杨先凤, 李小兰, 贵红军. 改进的自适应伽马变换图像增强算法仿真. 计算机仿真, 2020, 37(5): 241- 245.
|
|
YANG X F, LI X L, GUI H J. Simulation of improved adaptive gamma transform image enhancement algorithm. Computer Simulation, 2020, 37(5): 241- 245.
|
15 |
SONG R X, LI D, YU J D. Low illumination image enhancement algorithm based on DT-CWT and tone mapping. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(7): 1305- 1311.
|
16 |
HANTOUSH S A, ALRIDHA A H. Dynamic weights equations for converting grayscale image to RGB image. Journal of University of Babylon for Pure and Applied Sciences, 2018, 26(8): 122- 129.
doi: 10.29196/jubpas.v26i8.1677
|
17 |
YE G D, PAN C, HUANG X L, et al. A chaotic image encryption algorithm based on information entropy. International Journal of Bifurcation and Chaos, 2018, 28(1): 1850010.
doi: 10.1142/S0218127418500104
|
18 |
|
|
|
19 |
CHEN G Y, DING Y F, SHEN X P. Sweet KNN: an efficient KNN on GPU through reconciliation between redundancy removal and regularity[C]//Proceedings of the 33rd International Conference on Data Engineering. Washington D. C., USA. IEEE Press, 2017: 621-632.
|
20 |
QASIM S, KHAN K N, YU M, et al. Performance evaluation of background subtraction techniques for video frames[C]//Proceedings of International Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2021: 102-107.
|
21 |
ZORAN, ZIVKOVIC. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773- 780.
doi: 10.1016/j.patrec.2005.11.005
|
22 |
|
23 |
WANG S K, CHEN L, ZHOU Z X, et al. Human fall detection in surveillance video based on PCANet. Multimedia Tools and Applications, 2016, 75(19): 11603- 11613.
doi: 10.1007/s11042-015-2698-y
|
24 |
XIONG Z G, TANG Z W, CHEN X W, et al. Research on image retrieval algorithm based on combination of color and shape features. Journal of Signal Processing Systems, 2021, 93(2): 139- 146.
|
25 |
张坤, 胡斌星, 许新鹏, 等. 基于对数极坐标变换的快速相关匹配算法. 飞行力学, 2020, 38(2): 61- 65.
URL
|
|
ZHANG K, HU B X, XU X P, et al. A fast correlation matching algorithm based on log-polar transform. Flight Dynamics, 2020, 38(2): 61- 65.
URL
|
26 |
关文喆. 基于机器视觉的司机异常驾驶行为研究[D]. 北京: 北京邮电大学, 2020.
|
|
GUAN W Z. Research on driver's abnormal driving behavior based on machine vision[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. (in Chinese)
|
27 |
HUANG Y J, DING H T, ZHANG Y B, et al. A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1376- 1386.
doi: 10.1109/TIE.2019.2898599
|
28 |
周作梅, 石成远. 基于Retinex的低照度图像增强算法研究. 信息与电脑, 2020, 32(20): 48- 50.
URL
|
|
ZHOU Z M, SHI C Y. Research on low illumination image enhancement algorithm based on retinex. China Computer & Communication, 2020, 32(20): 48- 50.
URL
|