作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (9): 279-286. doi: 10.19678/j.issn.1000-3428.0065832

• 开发研究与工程应用 • 上一篇    下一篇

基于自适应伽马校正的异常驾驶行为检测方法

艾青松1,2, 张皓喆1, 严俊伟1,3   

  1. 1. 武汉理工大学 信息工程学院, 武汉 430070
    2. 湖北大学 计算机与信息工程学院, 武汉 430062
    3. 宽带无线通信和传感器网络湖北省重点实验室, 武汉 430070
  • 收稿日期:2022-09-23 出版日期:2023-09-15 发布日期:2023-09-14
  • 作者简介:

    艾青松(1981—),男,教授、博士,主研方向为信号处理、异常驾驶行为检测

    张皓喆,硕士研究生

    严俊伟,副教授、博士

  • 基金资助:
    国家重点研发计划(2021YFB2600302)

Abnormal Driving Behavior Detection Method Based on Adaptive Gamma Correction

Qingsong AI1,2, Haozhe ZHANG1, Junwei YAN1,3   

  1. 1. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
    2. College of Computer and Information Engineering, Hubei University, Wuhan 430062, China
    3. Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan 430070, China
  • Received:2022-09-23 Online:2023-09-15 Published:2023-09-14

摘要:

针对低照度条件下重型卡车司机异常驾驶行为检测方法存在检测准确率低、检测速度慢等问题,结合图像自适应增强方法和轮廓定位检测思想,提出一种基于自适应伽马校正的异常驾驶行为检测方法。对传入视频图像进行自适应伽马校正,通过抑制噪声、改善暗部和提升信息熵来提高识别准确率。基于图像灰度值和信息熵对双阈值伽马函数进行自适应调节,从而获得更丰富的边缘信息和色彩信息。利用K-近邻背景建模法将驾驶员前景图像分离以确定检测区域,通过边缘检测进行驾驶员头部和手部轮廓识别,获得关键定位点间的欧氏距离,并进行异常驾驶行为判断。在此基础上,结合异常行为次数和时间阈值,解决环境干扰和图像噪声的问题。实验结果表明,与单尺度Retinex、多尺度Retinex以及自适应直方图均衡方法相比,所提方法在提高检测准确率的同时有效提高了检测速度,能在不同环境下有效检测异常驾驶行为。

关键词: 异常驾驶检测, 关键点定位, 伽马校正, 边缘检测, K-近邻背景建模

Abstract:

To address the problems of low detection accuracy and slow detection speed of heavy truck driver abnormal driving behavior detection methods under low illumination conditions, an abnormal driving behaviors detection method based on adaptive Gamma correction is proposed by combining image adaptive enhancement methods and contour localization detection ideas.The adaptive Gamma correction is applied to the incoming video image to realize noise suppression, darkness improvement, and information entropy enhancement to improve the accuracy of recognition. The double threshold Gamma function is adaptively adjusted based on the image grey value and information entropy to obtain richer edge information and color information.A K-Nearest Neighbor(KNN) background subtraction model is constructed to separate the driver foreground image to determine the detection area, while the driver head and hand contours are identified by edge detection to obtain the Euclidean distance between key localization points for abnormal driving behavior judgement. Based on this, the number of abnormal behaviors and time thresholds are fused to solve the problem of environmental interference and image noise. The experimental results show that when compared with the Single-Scale Retinex(SSR), Multi-Scale Retinex(MSR) and the adaptive histogram equalization method, the proposed method not only improves detection accuracy but also effectively improves detection speed. Furthermore, the proposed method can effectively detect abnormal driving behavior in different environments.

Key words: abnormal driving detection, key points location, Gamma correction, edge detection, K-Nearest Neighbor(KNN) background modeling