1 |
刘宝康, 王仁军, 尤晓妮, 等. 基于高分六号WFV数据的冬小麦种植面积提取. 测绘与空间地理信息, 2021, 44(1): 1- 4.
|
|
LIU B K, WANG R J, YOU X N, et al. Extraction of winter wheat area based on GF6-WFV remote sensing image. Geomatics & Spatial Information Technology, 2021, 44(1): 1- 4.
|
2 |
MIELIKAINEN J, TOIVANEN P. Lossless compression of hyperspectral images using a quantized index to lookup tables. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 474- 478.
doi: 10.1109/LGRS.2008.917598
|
3 |
RYAN M J, ARNOLD J F. The lossless compression of AVIRIS images by vector quantization. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 546- 550.
doi: 10.1109/36.581964
|
4 |
LIU X M, WU X L, ZHOU J T, et al. Data-driven soft decoding of compressed images in dual transform-pixel domain. IEEE Transactions on Image Processing, 2016, 25(4): 1649- 1659.
doi: 10.1109/TIP.2016.2526910
|
5 |
于恒, 梅红岩, 许晓明, 等. 基于深度学习的图像压缩算法研究综述. 计算机工程与应用, 2020, 56(15): 15- 23.
URL
|
|
YU H, MEI H Y, XU X M, et al. Survey of image compression algorithm based on deep learning. Computer Engineering and Applications, 2020, 56(15): 15- 23.
URL
|
6 |
|
7 |
BALLÉ J, LAPARRA V, SIMONCELLI E P. End-to-end optimization of nonlinear transform codes for perceptual quality[C]//Proceedings of Picture Coding Symposium. Washington D. C., USA: IEEE Press, 2017: 1-5.
|
8 |
|
9 |
|
10 |
ONG F Q, HU K D, LI Y S, et al. Spectral-spatial feature partitioned extraction based on CNN for multispectral image compression. Remote Sensing, 2020, 13(1): 9.
doi: 10.3390/rs13010009
|
11 |
刘东, 王叶斐, 林建平, 等. 端到端优化的图像压缩技术进展. 计算机科学, 2021, 48(3): 1- 8.
URL
|
|
LIU D, WANG Y F, LIN J P, et al. Advances in end-to-end optimized image compression technologies. Computer Science, 2021, 48(3): 1- 8.
URL
|
12 |
KONG F, ZHAO S, LI Y, et al. A residual network framework based on weighted feature channels for multispectral image compression. Ad Hoc Networks, 2020, 107, 102272.
doi: 10.1016/j.adhoc.2020.102272
|
13 |
LI M, ZUO W M, GU S H, et al. Learning convolutional networks for content-weighted image compression[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3214-3223.
|
14 |
MENTZER F, AGUSTSSON E, TSCHANNEN M, et al. Conditional probability models for deep image compression[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4394-4402.
|
15 |
BALLÉ J, LAPARRA V, SIMONCELLI E P. Density modeling of images using a generalized normalization transformation[EB/OL]. [2022-04-05]. https://arxiv.org/abs/1511.06281.
|
16 |
|
17 |
王铭, 姜淑华, 吴杰, 等. 基于改进生成式对抗网络的图像去雾算法研究. 长春理工大学学报(自然科学版), 2021, 44(2): 93- 99.
URL
|
|
WANG M, JIANG S H, WU J, et al. Research on image defogging algorithm based on improved generative antagonistic network. Journal of Changchun University of Science and Technology(Netural Science Edition), 2021, 44(2): 93- 99.
URL
|
18 |
MINNEN D, BALLÉ J, TODERICI G. Joint autoregressive and hierarchical priors for learned image compression[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2018: 10794-10803.
|
19 |
LEE J, CHO S, KIM M. An end-to-end joint learning scheme of image compression and quality enhancement with improved entropy minimization[EB/OL]. [2022-04-05]. https://arxiv.org/abs/1912.12817.
|
20 |
YANG Y H. Elements of information theory. Journal of the American Statistical Association, 2008, 103(481): 429.
|
21 |
方知. 高光谱图像降维压缩比自动检测数学模型仿真. 计算机仿真, 2021, 38(4): 487- 491.
URL
|
|
FANG Z. Mathematical model simulation of dimension reduction compression ratio automatic detection for hyperspectral images. Computer Simulation, 2021, 38(4): 487- 491.
URL
|
22 |
YD A, RSS A, KP B, et al. Convolution neural network based lossy compression of hyperspectral images. Signal Processing: Image Communication, 2021, 95, 116255.
|
23 |
WALLACE G K. The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics, 1992, 38(1): 1- 17.
|
24 |
梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估. 遥感学报, 2020, 24(10): 1168- 1179.
|
|
LIANG J, ZHENG Z W, XIA S T, et al. Crop recognition and evaluationusing red edge features of GF-6 satellite. Journal of Remote Sensing, 2020, 24(10): 1168- 1179.
|
25 |
赵兵杰. 基于GF-1与Landsat-8的种植结构提取与产量估测[D]. 邯郸: 河北工程大学, 2019.
|
|
ZHAO B J. Extraction of planting structure and yield estimation based on GF-1 and Landsat-8[D]. Handan: Hebei University of Engineering, 2019. (in Chinese)
|