作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (7): 257-265. doi: 10.19678/j.issn.1000-3428.0058167

• 图形图像处理 • 上一篇    下一篇

结合边缘检测的语义分割算法

王囡1,2, 侯志强1,2, 赵梦琦1,2, 余旺盛3, 马素刚1,2   

  1. 1. 西安邮电大学 计算机学院, 西安 710121;
    2. 西安邮电大学 陕西省网络数据分析与智能处理重点实验室, 西安 710121;
    3. 空军工程大学 信息与导航学院, 西安 710077
  • 收稿日期:2020-04-24 修回日期:2020-06-03 发布日期:2020-06-15
  • 作者简介:王囡(1996-),女,硕士研究生,主研方向为计算机视觉、图像分割;侯志强,教授;赵梦琦,硕士研究生;余旺盛,讲师;马素刚,博士研究生。
  • 基金资助:
    国家自然科学基金(61473309,61703423)。

Semantic Segmentation Algorithm Combined with Edge Detection

WANG Nan1,2, HOU Zhiqiang1,2, ZHAO Mengqi1,2, YU Wangsheng3, MA Sugang1,2   

  1. 1. College of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
    2. Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
    3. Information and Navigation Institute, Air Force Engineering University, Xi'an 710077, China
  • Received:2020-04-24 Revised:2020-06-03 Published:2020-06-15

摘要: 针对语义分割中目标边缘模糊与分割不准确的问题,提出一种结合边缘检测的语义分割网络。整个网络由边缘检测网络和语义分割网络并行组成。利用边缘检测网络与语义分割网络分别提取图像的边缘特征和初步的语义分割特征,通过特征融合模块将边缘特征和语义分割特征进行融合,得到最终的语义分割结果。在CamVid数据集和Cityscapes数据集上的实验结果表明,与SegNet算法相比,该算法平均交并比分别提升了1.5和1.8个百分点,验证了所提算法的有效性。

关键词: 卷积神经网络, 全卷积网络, 语义分割, 边缘检测, 特征融合

Abstract: To address the fuzzy and inaccurate target edges in semantic segmentation,a semantic segmentation network combined with edge detection is proposed.The network consists of an edge detection network and a semantic segmentation network.The edge detection network is used to extract the edge features of the image,while the semantic segmentation network is used to extract the preliminary semantic segmentation features.The edge features and the semantic segmentation features are fused through the feature fusion module to obtain the final semantic segmentation result.The experimental results show that compared with the SegNet algorithm,the proposed algorithm improves the mIoU by 1.5 percentage points on the CamVid dataset and 1.8 percentage points on the Cityscapes dataset.The effectiveness of the proposed algorithm is verified.

Key words: convolutional neural network, Fully Convolutional Network(FCN), semantic segmentation, edge detection, feature fusion

中图分类号: