1 |
XU Y S, TONG X H, STILLA U. Voxel-based representation of 3D point clouds: methods, applications, and its potential use in the construction industry. Automation in Construction, 2021, 126, 103675.
doi: 10.1016/j.autcon.2021.103675
|
2 |
DIGNE J, DE FRANCHIS C. The bilateral filter for point clouds. Image Processing On Line, 2017, 7, 278- 287.
doi: 10.5201/ipol.2017.179&restype=unixref&xml=|Nat Cell Biol||10||295|2008|||
|
3 |
TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C]//Proceedings of the 6th International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 1998: 839-846.
|
4 |
CHEN B H, TSENG Y S, YIN J L. Gaussian-adaptive bilateral filter. IEEE Signal Processing Letters, 2020, 27, 1670- 1674.
doi: 10.1109/LSP.2020.3024990
|
5 |
KURUP A M, BOS J. DSOR: a scalable statistical filter for removing falling snow from LiDAR point clouds in severe winter weather[EB/OL]. [2023-04-11]. http://arxiv.org/abs/2109.07078v2.
|
6 |
|
7 |
JENKE P, WAND M, BOKELOH M, et al. Bayesian point cloud reconstruction. Computer Graphics Forum, 2006, 25(3): 379- 388.
doi: 10.1111/j.1467-8659.2006.00957.x
|
8 |
李倩, 向海昀, 张玉婷, 等. 结合高斯滤波与MASK的G-MASK人脸对抗攻击. 计算机工程, 2024, 50(2): 308- 316.
URL
|
|
LI Q, XIANG H Y, ZHANG Y T, et al. G-MASK facial adversarial attack combining Gaussian filtering and MASK. Computer Engineering, 2024, 50(2): 308- 316.
URL
|
9 |
GAO W, TEDRAKE R. FilterReg: robust and efficient probabilistic point-set registration using Gaussian filter and twist parameterization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 11087-11096.
|
10 |
ALQADI Z A, BARAKAT M T. A case study to improve the quality of median filter. International Journal of Computer Science and Mobile Computing, 2021, 10(11): 19- 28.
doi: 10.47760/ijcsmc.2021.v10i11.004
|
11 |
CAI S S, ZHANG W M, LIANG X L, et al. Filtering airborne LiDAR data through complementary cloth simulation and progressive TIN densification filters. Remote Sensing, 2019, 11(9): 1037.
doi: 10.3390/rs11091037
|
12 |
YANG A X, WU Z Y, YANG F L, et al. Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163, 49- 61.
doi: 10.1016/j.isprsjprs.2020.03.004
|
13 |
PATRICK S, WEINMANN M, KLEIN R. Incomplete Gamma kernels: generalizing locally optimal projection operators[EB/OL]. [2023-04-11]. https://arxiv.org/abs/2205.01087.
|
14 |
FAIGENBAUM-GOLOVIN S, LEVIN D. Manifold reconstruction and denoising from scattered data in high dimension. Journal of Computational and Applied Mathematics, 2023, 421, 114818.
doi: 10.1016/j.cam.2022.114818
|
15 |
顾砾, 季怡, 刘纯平. 基于多模态特征融合的三维点云分类方法. 计算机工程, 2021, 47(2): 279- 284.
URL
|
|
GU L, JI Y, LIU C P. Classification method of three-dimensional point cloud based on multiple modal feature fusion. Computer Engineering, 2021, 47(2): 279- 284.
URL
|
16 |
ZHANG W M, QI J B, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sensing, 2016, 8(6): 501.
doi: 10.3390/rs8060501
|
17 |
XIONG B, JIANG W Z, LI D K, et al. Voxel grid-based fast registration of terrestrial point cloud. Remote Sensing, 2021, 13(10): 1905.
doi: 10.3390/rs13101905
|
18 |
SHI W J, XU J W, ZHU D C, et al. RGB-D semantic segmentation and label-oriented voxel grid fusion for accurate 3D semantic mapping. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 183- 197.
doi: 10.1109/TCSVT.2021.3056726
|
19 |
POUX F, BILLEN R. Voxel-based 3D point cloud semantic segmentation: unsupervised geometric and relationship featuring vs deep learning methods. ISPRS International Journal of Geo-Information, 2019, 8(5): 213.
doi: 10.3390/ijgi8050213
|
20 |
FAIRFIELD N, KANTOR G, WETTERGREEN D. Real-time SLAM with octree evidence grids for exploration in underwater tunnels. Journal of Field Robotics, 2007, 24(1/2): 3- 21.
|
21 |
杨铭, 张晓丽, 霍朗宁, 等. 森林区域机载LiDAR点云数据的改进八叉树滤波算法研究. 北京林业大学学报, 2018, 40(11): 102- 111.
URL
|
|
YANG M, ZHANG X L, HUO L N, et al. Improved octree filtering algorithm of airborne LiDAR data in forest environment. Journal of Beijing Forestry University, 2018, 40(11): 102- 111.
URL
|
22 |
BUJÁN S, CORDERO M, MIRANDA D. Hybrid overlap filter for LiDAR point clouds using free software. Remote Sensing, 2020, 12(7): 1051.
doi: 10.3390/rs12071051
|
23 |
ŠTULAR B, LOZIĆ E. Comparison of filters for archaeology-specific ground extraction from airborne LiDAR point clouds. Remote Sensing, 2020, 12(18): 3025.
doi: 10.3390/rs12183025
|
24 |
CHEN C F, CHANG B T, LI Y Y, et al. Filtering airborne LiDAR point clouds based on a scale-irrelevant and terrain-adaptive approach. Measurement, 2021, 171, 108756.
doi: 10.1016/j.measurement.2020.108756
|
25 |
唐超, 左文涛, 李小飞. 结合修剪均值与高斯加权中值滤波的图像去噪算法. 计算机工程, 2021, 47(9): 210- 216.
URL
|
|
TANG C, ZUO W T, LI X F. Image denoising algorithm combining trimmed mean and Gaussian weighted median filtering. Computer Engineering, 2021, 47(9): 210- 216.
URL
|
26 |
|
27 |
KUMAR A, SODHI S S. Comparative analysis of Gaussian filter, median filter and denoise autoenocoder[C]//Proceedings of the 7th International Conference on Computing for Sustainable Global Development. Washington D. C., USA: IEEE Press, 2020: 45-51.
|
28 |
PAULY M, GROSS M. Spectral processing of point-sampled geometry[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM Press, 2001: 379-386.
|
29 |
CLARENZ U, RUMPF M, TELEA A. Fairing of point based surfaces[C]//Proceedings of International Conference on Computer Graphics. Washington D. C., USA: IEEE Press, 2004: 600-603.
|
30 |
熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展. 交通运输工程学报, 2021, 21(1): 177- 198.
URL
|
|
XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177- 198.
URL
|
31 |
蔡文锋, 张威风, 冯洋, 等. 提速情况下磁浮轨道结构振动响应及传递特性研究. 铁道标准设计, 2023, 67(3): 55- 60.
URL
|
|
CAI W F, ZHANG W F, FENG Y, et al. Study on the vibration response and transfer characteristics of maglev track structures under speed-up. Railway Standard Design, 2023, 67(3): 55- 60.
URL
|
32 |
蔡文涛, 王春江, 滕念管, 等. 超高速磁浮轨道梁体系的跨平台耦合振动分析. 上海交通大学学报, 2021, 55(10): 1228- 1236.
URL
|
|
CAI W T, WANG C J, TENG N G, et al. Analysis of cross-platform coupling vibration of ultra-high-speed maglev track beam system. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1228- 1236.
URL
|
33 |
李洪鲁. 基于图像的高速磁浮长定子轨道异常状况的检测研究[D]. 长沙: 国防科技大学, 2019.
|
|
LI H L. Image-based detection of abnormal condition for high-speed maglev long stator track[D]. Changsha: National University of Defense Technology, 2019. (in Chinese)
|
34 |
黄玉龙. 基于视频图像的管道裂纹缺陷检测方法研究[D]. 西安: 西安理工大学, 2018.
|
|
HUANG Y L. Research on pipeline crack detection based on video image[D]. Xi'an: Xi'an University of Technology, 2018. (in Chinese)
|
35 |
姚连璧, 刘昊, 孙向东, 等. 一种磁浮滑行面点云数据提取方法: CN112581579B[P]. 2022-11-18.
|
|
YAO L B, LIU H, SUN X D, et al. A method for extracting point cloud data of maglev sliding surface: CN112581579B[P]. 2022-11-18. (in Chinese)
|
36 |
SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 4104-4113.
|
37 |
SCHÖNBERGER J L, ZHENG E L, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 501-518.
|
38 |
陈武, 姜三, 李清泉, 等. 无人机影像增量式运动恢复结构研究进展. 武汉大学学报(信息科学版), 2022, 47(10): 1662- 1674.
URL
|
|
CHEN W, JIANG S, LI Q Q, et al. Research progress on incremental motion recovery structures for unmanned aircraft images. Journal of Wuhan University (Information Science Edition), 2022, 47(10): 1662- 1674.
URL
|
39 |
FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362- 1376.
|