1 |
LAVERGNE S, MOLOFSKY J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(10): 3883- 3888.
|
2 |
PERKINS L B, LEGER E A, NOWAK R S. Invasion triangle: an organizational framework for species invasion. Ecology and Evolution, 2011, 1(4): 610- 625.
doi: 10.1002/ece3.47
|
3 |
GOTELLI N J, ARNETT A E. Biogeographic effects of red fire ant invasion. Ecology Letters, 2000, 3(4): 257- 261.
doi: 10.1046/j.1461-0248.2000.00138.x
|
4 |
CUI Z H, GAO X Z. Theory and applications of swarm intelligence. Neural Computing and Applications, 2012, 21(2): 205- 206.
doi: 10.1007/s00521-011-0523-8
|
5 |
GOLDBERG D. Genetic algorithms in search optimization and machine learning[M]. [S. l.]: Addison-Wesley Longman Publishing Co., Inc., 1988.
|
6 |
GAO X Z, OVASKA S J. Genetic algorithm training of Elman neural network in motor fault detection. Neural Computing & Applications, 2002, 11(1): 37- 44.
|
7 |
STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341- 359.
doi: 10.1023/A:1008202821328
|
8 |
WANG G G, GANDOMI A H, ALAVI A H, et al. Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Computing and Applications, 2014, 25(2): 297- 308.
doi: 10.1007/s00521-013-1485-9
|
9 |
KOZA J R. Genetic programming: on the programming of computers by means of natural selection. Cambridge, USA: MIT Press, 1992.
|
10 |
BEYER H G, SCHWEFEL H P. Evolution strategies—a comprehensive introduction. Natural Computing, 2002, 1, 3- 52.
doi: 10.1023/A:1015059928466
|
11 |
|
12 |
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69, 46- 61.
doi: 10.1016/j.advengsoft.2013.12.007
|
13 |
SAREMI S, MIRJALILI S Z, MIRJALILI S M. Evolutionary population dynamics and grey wolf optimizer. Neural Computing and Applications, 2015, 26(5): 1257- 1263.
doi: 10.1007/s00521-014-1806-7
|
14 |
MIRJALILI S, LEWIS A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008
|
15 |
POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization. Swarm Intelligence, 2007, 1(1): 33- 57.
doi: 10.1007/s11721-007-0002-0
|
16 |
MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 2016, 96, 120- 133.
doi: 10.1016/j.knosys.2015.12.022
|
17 |
LIU H, YU L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491- 502.
doi: 10.1109/TKDE.2005.66
|
18 |
JENSEN R, MAC PARTHALÁIN N. Towards scalable fuzzy-rough feature selection. Information Sciences, 2015, 323, 1- 15.
doi: 10.1016/j.ins.2015.06.025
|
19 |
PARK C, KIM S. Sequential random k-nearest neighbor feature selection for high-dimensional data. Expert Systems with Applications, 2015, 42, 2336- 2342.
doi: 10.1016/j.eswa.2014.10.044
|
20 |
EMARY E, ZAWBAA H M, HASSANIEN A E. Binary grey wolf optimization approaches for feature selection. Neurocomputing, 2016, 172, 371- 381.
doi: 10.1016/j.neucom.2015.06.083
|
21 |
HAFEZ A I, ZAWBAA H M, EMARY E, et al. Sine cosine optimization algorithm for feature selection[C]//Proceedings of the International Symposium on Innovations in Intelligent Systems and Applications. Washington D. C., USA: IEEE Press, 2016: 1-5.
|
22 |
MAFARJA M M, MIRJALILI S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing, 2017, 260, 302- 312.
doi: 10.1016/j.neucom.2017.04.053
|
23 |
SHERPA S, DESPRÉS L. The evolutionary dynamics of biological invasions: a multi-approach perspective. Evolutionary Applications, 2021, 14(6): 1463- 1484.
doi: 10.1111/eva.13215
|
24 |
HASSELMAN D J, BENTZEN P, NARUM S R, et al. Formation of population genetic structure following the introduction and establishment of non-native American shad (Alosa sapidissima) along the Pacific Coast of North America. Biological Invasions, 2018, 20(11): 3123- 3143.
doi: 10.1007/s10530-018-1763-7
|
25 |
NAYAK S K, ROUT P K, JAGADEV A K, et al. Elitism based multi-objective differential evolution for feature selection: a filter approach with an efficient redundancy measure. Journal of King Saud University - Computer and Information Sciences, 2020, 32(2): 174- 187.
doi: 10.1016/j.jksuci.2017.08.001
|
26 |
SHAW M W. Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Biological Sciences, 1995, 259(1356): 243- 248.
|
27 |
|
28 |
ARORA S, ANAND P. Binary butterfly optimization approaches for feature selection. Expert Systems with Applications, 2019, 116, 147- 160.
doi: 10.1016/j.eswa.2018.08.051
|
29 |
HELBIG M, ENGELBRECHT A. Partial dominance for many-objective optimization[C]//Proceedings of the 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. New York, USA: ACM Press, 2020: 81-86.
|
30 |
ZAWBAA H M, EMARY E, GROSAN C, et al. Large-dimensionality small-instance set feature selection: a hybrid bio-inspired heuristic approach. Swarm and Evolutionary Computation, 2018, 42, 29- 42.
doi: 10.1016/j.swevo.2018.02.021
|
31 |
|
32 |
FRANKLIN J. The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 2005, 27(2): 83- 85.
|
33 |
MAFARJA M, ALJARAH I, FARIS H, et al. Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Systems with Applications, 2019, 117, 267- 286.
doi: 10.1016/j.eswa.2018.09.015
|
34 |
MAFARJA M M, ELEYAN D, JABER I, et al. Binary dragonfly algorithm for feature selection[C]//Proceedings of the International Conference on New Trends in Computing Sciences (ICTCS). Washington D. C., USA: IEEE Press, 2017: 12-17.
|
35 |
HANCER E, XUE B, ZHANG M J, et al. Pareto front feature selection based on artificial bee colony optimization. Information Sciences, 2018, 422, 462- 479.
doi: 10.1016/j.ins.2017.09.028
|
36 |
HEGAZY A E, MAKHLOUF M A, EL-TAWEL G S. Improved salp swarm algorithm for feature selection. Journal of King Saud University - Computer and Information Sciences, 2020, 32(3): 335- 344.
doi: 10.1016/j.jksuci.2018.06.003
|
37 |
GHAEMI M, FEIZI-DERAKHSHI M R. Feature selection using forest optimization algorithm. Pattern Recognition, 2016, 60, 121- 129.
doi: 10.1016/j.patcog.2016.05.012
|
38 |
XUE B, ZHANG M J, BROWNE W N. Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Applied Soft Computing, 2014, 18, 261- 276.
doi: 10.1016/j.asoc.2013.09.018
|
39 |
ZHANG Y S, YANG A R, XIONG C, et al. Feature selection using data envelopment analysis. Knowledge-Based Systems, 2014, 64, 70- 80.
doi: 10.1016/j.knosys.2014.03.022
|
40 |
ALTMAN N S. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 1992, 46(3): 175.
doi: 10.1080/00031305.1992.10475879
|
41 |
YANG X K, ZHEN L H, LI Z S. Binary golden eagle optimizer combined with initialization of feature number subspace for feature selection. Knowledge-Based Systems, 2023, 282, 111109.
doi: 10.1016/j.knosys.2023.111109
|