1 |
LI H F, HUANG H K, CHEN L, et al. Adversarial examples for CNN-based SAR image classification: an experience study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1333- 1347.
doi: 10.1109/JSTARS.2020.3038683
|
2 |
陈晓楠, 胡建敏, 张本俊, 等. 基于模型间迁移性的黑盒对抗攻击起点提升方法. 计算机工程, 2021, 47 (8): 162- 169.
URL
|
|
CHEN X N, HU J M, ZHANG B J, et al. Black box adversarial attack starting point promotion method based on mobility between models. Computer Engineering, 2021, 47 (8): 162- 169.
URL
|
3 |
柴梦婷, 朱远平. 生成式对抗网络研究与应用进展. 计算机工程, 2019, 45 (9): 222- 234.
URL
|
|
CHAI M T, ZHU Y P. Research and application progress of generative adversarial networks. Computer Engineering, 2019, 45 (9): 222- 234.
URL
|
4 |
SHEN M, YU H, ZHU L H, et al. Effective and robust physical-world attacks on deep learning face recognition systems. IEEE Transactions on Information Forensics and Security, 2021, 16, 4063- 4077.
doi: 10.1109/TIFS.2021.3102492
|
5 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
6 |
|
7 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1-10.
|
8 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2017: 4278-4284.
|
9 |
SHARIF M, BHAGAVATULA S, BAUER L, et al. Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition[C]//Proceedings of ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2016: 1528-1540.
|
10 |
姜妍, 张立国. 面向深度学习模型的对抗攻击与防御方法综述. 计算机工程, 2021, 47 (1): 1- 11.
doi: 10.3969/j.issn.1007-130X.2021.01.001
|
|
JIANG Y, ZHANG L G. Survey of adversarial attacks and defense methods for deep learning model. Computer Engineering, 2021, 47 (1): 1- 11.
doi: 10.3969/j.issn.1007-130X.2021.01.001
|
11 |
|
12 |
|
13 |
DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 9185-9193.
|
14 |
ZHANG Y K, JIANG Z Y, VILLALBA J, et al. Black-box attacks on spoofing countermeasures using transferability of adversarial examples[C]//Proceedings of Conference on the International Speech Communication Association. Washington D. C., USA: IEEE Press, 2020: 4238-4242.
|
15 |
TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 1-10.
|
16 |
SUN Y, WANG X G, TANG X O. Deep learning face representation from predicting 10, 000 classes[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 1-10.
|
17 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
18 |
HU J E, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
19 |
WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1-10.
|
20 |
WANG P S, CHENG J. Accelerating convolutional neural networks for mobile applications[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1-10.
|
21 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: why did you say that? Visual explanations from deep networks via gradient-based localization[EB/OL]. [2022-11-05]. https://arxiv.org/pdf/1610.02391.pdf.
|
22 |
MOOSAVI-DEZFOOLI S M, FAWZI A, FAWZI O, et al. Universal adversarial perturbations[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1765-1773.
|
23 |
|
24 |
|
25 |
WEI X X, LIANG S Y, CHEN N, et al. Transferable adversarial attacks for image and video object detection[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2019: 954-960.
|
26 |
ZHANG K P, ZHANG Z P, LI Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 2016, 23 (10): 1499- 1503.
doi: 10.1109/LSP.2016.2603342
|