[1] SPECHT O, SPECHT M, STATECZNY A, et al. Concept of an innovative system for dimensioning and predicting changes in the coastal zone topography using UAVs and USVs (4DBatMap system)[J]. Electronics, 2023, 12(19):4112. [2] SUN M X, JI Z X, JIAO X, et al. Mapping grassland based on bio-climate probability and intra-annual time-series abundance data of vegetation habitats[J]. Remote Sensing, 2023, 15(19):4723. [3] YANG X D, CHEN M H, REN Y L, et al. Multivariate joint order recurrence networks for characterization of multi-lead ECG time series from healthy and pathological heartbeat dynamics[J]. Chaos, 2023, 33(10):103120. [4] KHOSRAVI M, GHAZANI M M. Novel insights into the modeling financial time-series through machine learning methods:evidence from the cryptocurrency market[J]. Expert Systems with Applications, 2023, 234:121012. [5] 李显.天文数据稀有时间序列分类研究[D].太原:太原理工大学, 2022. LI X. Research on rare time series classification of astronomical data[D]. Taiyuan:Taiyuan University of Technology, 2022.(in Chinese) [6] ZHAO H Y, JIN J, LIU Y, et al. Detection of X-ray bursts in astronomical time series:the burst of GRO J1744-28 as an example[J]. The Astrophysical Journal, 2023, 942(2):89. [7] 康璐璐,范兴容,王茜竹,等.基于特征组分层与半监督学习的鼠标轨迹识别[J].计算机工程, 2021, 47(4):277-284. KANG L L, FAN X R, WANG Q Z, et al. Mouse trajectory recognition based on feature group hierarchy and semi-supervised learning[J]. Computer Engineering, 2021, 47(4):277-284.(in Chinese) [8] 孙昂,陈宁,何俐,等.基于小样本功能磁共振数据的偏头痛时序特征分类研究[J].生物医学工程学杂志, 2023, 40(1):110-117. SUN A, CHEN N, HE L, et al. Research on migraine time-series features classification based on small-sample functional magnetic resonance imaging data[J]. Journal of Biomedical Engineering, 2023, 40(1):110-117.(in Chinese) [9] YAN Y, SHEN X Z. Research on speech emotion recognition based on AA-CBGRU network[J]. Electronics, 2022, 11(9):1409. [10] BAGNALL A, LINES J, BOSTROM A, et al. The great time series classification bake off:a review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Knowledge Discovery, 2017, 31(3):606-660. [11] CHEN L, NG R. On the marriage of Lp-norms and edit distance[C]//Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada:EVLD Press, 2004:792-803. [12] CHEN L, ÖZSU M T, ORIA V. Robust and fast similarity search for moving object trajectories[C]//Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. New York, USA:ACM Press, 2005:491-502. [13] MARTEAU P F. Time warp edit distance with stiffness adjustment for time series matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):306-318. [14] STEFAN A, ATHITSOS V, DAS G. The move-split-merge metric for time series[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(6):1425-1438. [15] SCHÄFER P. The BOSS is concerned with time series classification in the presence of noise[J]. Data Mining and Knowledge Discovery, 2015, 29(6):1505-1530. [16] SCHÄFER P, LESER U. Fast and accurate time series classification with WEASEL[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York, USA:ACM Press, 2017:637-646. [17] MORRILL J, FERMANIAN A, KIDGER P, et al. A generalised signature method for multivariate time series feature extraction[EB/OL].[2023-08-10]. https://arxiv.org/abs/2006.00873. [18] CABELLO N, NAGHIZADE E, QI J Z, et al. Fast and accurate time series classification through supervised interval search[C]//Proceedings of the IEEE International Conference on Data Mining. Washington D. C., USA:IEEE Press, 2020:948-953. [19] FLYNN M, LARGE J, BAGNALL T. The contract Random Interval Spectral Ensemble (c-RISE):the effect of contracting a classifier on accuracy[C]//Proceedings of International Conference on Hybrid Artificial Intelligence Systems. Berlin, Germany:Springer, 2019:381-392. [20] MIDDLEHURST M, LARGE J, FLYNN M, et al. HIVE-COTE 2.0:a new meta ensemble for time series classification[J]. Machine Learning, 2021, 110(11/12):3211-3243. [21] SHIFAZ A, PELLETIER C, PETITJEAN F, et al. TS-CHIEF:a scalable and accurate forest algorithm for time series classification[J]. Data Mining and Knowledge Discovery, 2020, 34(3):742-775. [22] WANG Z G, YAN W Z, OATES T. Time series classification from scratch with deep neural networks:a strong baseline[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA:IEEE Press, 2017:1578-1585. [23] WU H X, HU T G, LIU Y, et al. TimesNet:temporal 2d-variation modeling for general time series analysis[EB/OL].[2023-08-10]. https://arxiv.org/abs/2210.02186. [24] 赵欣瑶.基于拓扑结构的全球股市联动与系统性金融风险研究[D].济南:山东财经大学, 2021. ZHAO X Y. Research on global stock market linkage and systematic financial risk based on topological structures[D]. Jinan:Shandong University of Finance and Economics, 2021.(in Chinese) [25] UMEDA Y. Time series classification via topological data analysis[J]. Information and Media Technologies, 2017, 12:228-239. [26] KARAN A, KAYGUN A. Time series classification via topological data analysis[J]. Expert Systems with Applications, 2021, 183:115326. [27] 任亚婧,张宏立.融合TDA的深度自编码网络车辆目标检测[J].信息与控制, 2019, 48(5):627-633. REN Y J, ZHANG H L. Vehicle target detection based on deep self-encoding network with TDA[J]. Information and Control, 2019, 48(5):627-633.(in Chinese) [28] 海彤.基于拓扑分析的时间序列分类[D].成都:西南财经大学, 2021. HAI T. Time series classification with topological data analysis[D]. Chengdu:Southwestern University of Finance and Economics, 2021.(in Chinese) [29] 尤承业.基础拓扑学讲义[M].北京:北京大学出版社, 1997. YOU C Y. Lecture notes on basic topology[M]. Beijing:Peking University Press, 1997.(in Chinese) [30] CARLSSON G, ZOMORODIAN A, COLLINS A, et al. Persistence barcodes for shapes[C]//Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. New York, USA:ACM Press, 2004:124-135. [31] ADAMS H, EMERSON T, KIRBY M, et al. Persistence images:a stable vector representation of persistent homology[J]. Journal of Machine Learning Research, 2017, 18(8):1-35. [32] BUBENIK P. Statistical topological data analysis using persistence landscapes[J]. Journal of Machine Learning Research, 2015, 16(1):77-102. [33] CHEVYREV I, NANDA V, OBERHAUSER H. Persistence paths and signature features in topological data analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(1):192-202. [34] ZOMORODIAN A, CARLSSON G. Computing persistent homology[J]. Discrete&Computational Geometry, 2005, 33(2):249-274. [35] PACKARD N H, CRUTCHFIELD J P, FARMER J D, et al. Geometry from a time series[J]. Physical Review Letters, 1980, 45(9):712-716. [36] COHEN-STEINER D, EDELSBRUNNER H, HARER J, et al. Persistent homology for kernels, images, and cokernels[C]//Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms. New York, USA:ACM Press, 2009:1011-1020. [37] 詹学燕,彭宁宁,殷杏子.基于持续同调改进的KNN拓扑分类算法[J].武汉理工大学学报, 2023, 45(3):146-155. ZHAN X Y, PENG N N, YIN X Z. An improved KNN topological classification algorithm based on persistent homology[J]. Journal of Wuhan University of Technology, 2023, 45(3):146-155.(in Chinese) [38] 殷杏子,彭宁宁,詹学燕.基于持续同调的过滤式特征选择算法[J].计算机科学, 2023, 50(6):159-166. YIN X Z, PENG N N, ZHAN X Y. Filtered feature selection algorithm based on persistent homology[J]. Computer Science, 2023, 50(6):159-166.(in Chinese) [39] BAUER U. Ripser:efficient computation of Vietoris-Rips persistence barcodes[J]. Journal of Applied and Computational Topology, 2021, 5(3):391-423. |