作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2010, Vol. 36 ›› Issue (20): 203-205. doi: 10.3969/j.issn.1000-3428.2010.20.071

• 人工智能及识别技术 • 上一篇    下一篇

基于改进粒子群优化算法的约束多目标优化

阳春华,莫志勋,李勇刚   

  1. (中南大学信息科学与工程学院,长沙 410083)
  • 出版日期:2010-10-20 发布日期:2010-10-18
  • 作者简介:阳春华(1965-),女,教授、博士、博士生导师,主研方向:复杂工业过程建模、仿真与优化,智能自动化控制;莫志勋,硕士研究生;李勇刚,副教授
  • 基金资助:
    国家自然科学基金资助项目“数据驱动的多相交互冶金过程能耗优化方法研究及应用”(60874069);教育部高校博士点专项科研基金资助项目“基于数据驱动的锌电解过程能耗优化方法研究”(200805331104)

Constrained Multi-objective Optimization Based on Improved Particle Swarm Optimization Algorithm

YANG Chun-hua, MO Zhi-xun, LI Yong-gang   

  1. (School of Information Science and Engineering, Central South University, Changsha 410083, China)
  • Online:2010-10-20 Published:2010-10-18

摘要: 针对约束多目标优化问题,提出一种改进的粒子群优化算法,采用距离量度和自适应惩罚函数相结合的约束处理技术,通过可行解比例有效均衡目标函数和约束条件,提高算法的边界搜索能力。定义新的k最近邻聚集密度,保持解集分布性,并将聚集密度和轮盘赌选择相结合选取全局最优粒子。仿真结果表明,该算法在Pareto解集均匀性及逼近性方面均具有优势。

关键词: 约束多目标优化, 距离量度, 自适应惩罚, 粒子群优化算法

Abstract: An improved constrained multi-objective Particle Swarm Optimization(PSO) algorithm which adopts constraint handling technology based on distance measures and adaptive penalty functions is proposed. The proportion of feasible solutions is used to keep the balance between objective function and constraints and improve the boundary searching capability of the algorithm. A new k nearest neighbors crowding density is defined to maintain the diversity of solutions. It selects the global optimal particle through the combination of crowding density and roulette selection. Experimental results demonstrate that the algorithm is efficient for solving constrained multi-objective optimization problems

Key words: constrained multi-objective optimization, distance measure, adaptive penalty, Particle Swarm Optimization(PSO) algorithm

中图分类号: