1 |
DUNG H A, CHEN B, CHIN T J. A spacecraft dataset for detection, segmentation and parts recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D. C., USA: IEEE Press, 2021: 2012-2019.
|
2 |
FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014, 68, 1- 26.
doi: 10.1016/j.paerosci.2014.03.002
|
3 |
逄晨曦, 李文辉. 基于注意力改进的自适应空间特征融合目标检测算法. 吉林大学学报(理学版), 2023, 61(3): 557- 566.
|
|
PANG C X, LI W H. Adaptive spatial feature fusion object detection algorithm based on attention improvement. Journal of Jilin University (Science Edition), 2023, 61(3): 557- 566.
|
4 |
KANG G H, ZHANG Q, WU J Q, et al. Pose estimation of a non-cooperative spacecraft without the detection and recognition of point cloud features. Acta Astronautica, 2021, 179, 569- 580.
doi: 10.1016/j.actaastro.2020.11.013
|
5 |
KOTHARI V, LIBERIS E, LANE N D. The final frontier: deep learning in space[C]//Proceedings of the 21st International Workshop on Mobile Computing Systems and Applications. New York, USA: ACM Press, 2020: 45-49.
|
6 |
|
7 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer International Publishing, 2020: 213-229.
|
8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 779-788.
|
9 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
10 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1-6.
|
11 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[M]. Berlin, Germany: Springer International Publishing, 2016.
|
12 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142- 158.
doi: 10.1109/TPAMI.2015.2437384
|
13 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
14 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
15 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386- 397.
doi: 10.1109/TPAMI.2018.2844175
|
16 |
LOWE D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
17 |
UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition. International Journal of Computer Vision, 2013, 104(2): 154- 171.
doi: 10.1007/s11263-013-0620-5
|
18 |
ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable Transformers for end-to-end object detection[EB/OL]. [2023-09-05]. http://arxiv.org/abs/2010.04159.
|
19 |
ROH B, SHIN J, SHIN W, et al. Sparse DETR: efficient end-to-end object detection with learnable sparsity[EB/OL]. [2023-09-05]. http://arxiv.org/abs/2111.14330.
|
20 |
MENG D P, CHEN X K, FAN Z J, et al. Conditional DETR for fast training convergence[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2021: 3631-3640.
|
21 |
GAO P, ZHENG M H, WANG X G, et al. Fast convergence of DETR with spatially modulated co-attention[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2021: 3601-3610.
|
22 |
DAI Z G, CAI B L, LIN Y G, et al. UP-DETR: unsupervised pre-training for object detection with Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 1601-1610.
|