1 |
王红茹, 张弓, 卢道华, 等. 基于背景光估计与颜色修正的水下图像增强. 计算机工程, 2020, 46(10): 253- 258.
URL
|
|
WANG H R, ZHANG G, LU D H, et al. Underwater image enhancement based on background light estimation and color correction. Computer Engineering, 2020, 46(10): 253- 258.
URL
|
2 |
DREWS P, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images[C]//Proceedings of IEEE International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2013: 825-830.
|
3 |
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341- 2353.
doi: 10.1109/TPAMI.2010.168
|
4 |
李莉, 王新强, 银珊. 基于衰减补偿与直方图拉伸的水下图像增强算法. 计算机工程, 2022, 48(6): 222- 227.
URL
|
|
LI L, WANG X Q, YIN S. Underwater image enhancement algorithm based on attenuation compensation and histogram stretching. Computer Engineering, 2022, 48(6): 222- 227.
URL
|
5 |
HUMMEL R. Image enhancement by histogram transformation. Computer Graphics and Image Processing, 1977, 6(2): 184- 195.
doi: 10.1016/S0146-664X(77)80011-7
|
6 |
HUANG D M, WANG Y, SONG W, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition[C]//Proceedings of International Conference on Multimedia Modeling. Berlin, Germany: Springer, 2018: 453-465.
|
7 |
徐超越, 余映, 何鹏浩, 等. 基于U-Net的多尺度低照度图像增强网络. 计算机工程, 2022, 48(8): 215- 223.
URL
|
|
XU C Y, YU Y, HE P H, et al. Multi-scale low-light image enhancement network based on U-Net. Computer Engineering, 2022, 48(8): 215- 223.
URL
|
8 |
WANG Y, ZHANG J, CAO Y, et al. A deep CNN method for underwater image enhancement[C]//Proceedings of 2017 IEEE International Conference on Image Processing (ICIP). New York, USA: ACM Press, 2017: 1382-1386.
|
9 |
陈清江, 解亚丽. 基于稠密级联卷积神经网络的水下图像增强. 激光与光电子学进展, 2022, 59(22): 2215004.
URL
|
|
CHEN Q J, XIE Y L. Underwater image enhancement based on dense cascaded convolutional neural network. Laser & Optoelectronics Progress, 2022, 59(22): 2215004.
URL
|
10 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2017: 2223-2232.
|
11 |
CHOI Y, CHOI M, KIM M, et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8789-8797.
|
12 |
DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 13733-13742.
|
13 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255.
|
14 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
15 |
HOU Q, LU C Z, CHENG M M, et al. Conv2Former: a simple Transformer-style ConvNet for visual re-cognition[EB/OL]. [2023-05-11]. https://arxiv.org/abs/2211.11943.
|
16 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
17 |
WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]//Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers. Washington D. C., USA: IEEE Press, 2003: 1398-1402.
|
18 |
ISLAM M J, XIA Y Y, SATTAR J. Fast underwater image enhancement for improved visual perception. IEEE Robotics and Automation Letters, 2020, 5(2): 3227- 3234.
doi: 10.1109/LRA.2020.2974710
|
19 |
LI C, GUO C, REN W, et al. An underwater image enhancement benchmark dataset and beyond. IEEE Transactions on Image Processing, 2019, 29, 4376- 4389.
|
20 |
HOU G J, LI J M, WANG G D, et al. A novel dark channel prior guided variational framework for underwater image restoration. Journal of Visual Communication and Image Representation, 2020, 66, 102732.
doi: 10.1016/j.jvcir.2019.102732
|
21 |
|
22 |
FU X Y, FAN Z W, LING M, et al. Two-step approach for single underwater image enhancement[C]//Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). Washington D. C., USA: IEEE Press, 2017: 789-794.
|
23 |
SONG W, WANG Y, HUANG D M, et al. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration[C]//Proceedings of the 19th Pacific-Rim Conference on Multimedia. Berlin, Germany: Springer, 2018: 678-688.
|
24 |
WANG D, MA L, LIU R S, et al. Semantic-aware texture-structure feature collaboration for underwater image enhancement[C]//Proceedings of International Conference on Robotics and Automation (ICRA). Washington D. C., USA: IEEE Press, 2022: 4592-4598.
|
25 |
KORHONEN J, YOU J Y. Peak signal-to-noise ratio revisited: is simple beautiful? [C]//Proceedings of the 4th International Workshop on Quality of Multimedia Experience. Washington D. C., USA: IEEE Press, 2012: 37-38.
|
26 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600- 612.
doi: 10.1109/TIP.2003.819861
|
27 |
PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541- 551.
|
28 |
YANG M, SOWMYA A. An underwater color image quality evaluation metric. IEEE Transactions on Image Processing, 2015, 24(12): 6062- 6071.
doi: 10.1109/TIP.2015.2491020
|