作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (8): 310-318. doi: 10.19678/j.issn.1000-3428.0067883

• 图形图像处理 • 上一篇    下一篇

基于卷积调制与空间协作的水下图像增强

郭伟, 王欣哲*(), 王江达, 王春艳   

  1. 辽宁工程技术大学软件学院, 辽宁 葫芦岛 125105
  • 收稿日期:2023-06-16 出版日期:2024-08-15 发布日期:2023-11-14
  • 通讯作者: 王欣哲
  • 基金资助:
    国家自然科学基金青年基金项目(41801368)

Underwater Image Enhancement Based on Convolutional Modulation and Spatial Collaboration

Wei GUO, Xinzhe WANG*(), Jiangda WANG, Chunyan WANG   

  1. School of Software, Liaoning Technical University, Huludao 125105, Liaoning, China
  • Received:2023-06-16 Online:2024-08-15 Published:2023-11-14
  • Contact: Xinzhe WANG

摘要:

针对光线在水中的散射和吸收效应造成水下图像纹理和结构不清晰的问题, 提出一种基于卷积调制(CM)与空间协作(SC)的水下图像增强算法。以编码器-解码器作为基础网络, 使用RepVGG的浅层和深层网络分别提取水下图像的纹理和结构特征。首先, 特征主导网络将RepVGG中提取到的水下图像特征转化成具有不同尺度的纹理和结构特征, 使其与解码器中的特征图进行拼接融合。其次, 在编码器中使用卷积调制模块, 采用深度可分离卷积(DSConv)模拟自注意力机制的方式减少图像细节信息的丢失, 提高编码器特征提取的能力。最后, 在解码器中使用空间协作卷积(SCConv), 在空间维度上处理水下特征保留更多的位置信息, 以提高解码器对融合后特征的增强能力。实验结果表明, 该算法在视觉感知与性能指标上优于对比算法, 峰值信噪比(PSNR)和结构相似性(SSIM)指标最高达到23.446 5 dB和0.894 6, 水下彩色图像质量评价(UCIQE)和水下图像质量测量(UIQM)指标最高达到0.582 6和3.068 9, 进一步证明了该算法能够有效增强水下图像的纹理和结构特征, 具有较好的视觉感知效果。

关键词: 图像处理, 水下图像增强, 卷积调制, 空间协作, 编解码结构

Abstract:

To address the issue of unclear textures and structures in underwater images due to light scattering and absorption effects in water, this paper proposes an underwater image enhancement algorithm based on Convolutional Modulation (CM) and Spatial Collaboration (SC). Using an encoder-decoder as the base network, the textural and structural features of underwater images are extracted using the shallow and deep networks of Reparameterization Visual Geometry Group (RepVGG). Initially, the feature dominative network transforms the underwater image features extracted from RepVGG into textural and structural features of various scales, which are then concatenated and fused with feature maps in the decoder. Subsequently, a CM module is employed within the encoder, where Depth Separable Convolution (DSConv) is implemented to simulate a self-attention mechanism to reduce the loss of image detail information and enhance feature extraction. Finally, Spatially Collaborative Convolution (SCConv) is performed in the decoder to process underwater features in the spatial dimension, preserving more positional information and enhancing the merged features. Experimental results indicate that this algorithm outperforms comparable algorithms in terms of visual perception and performance metrics, achieving a Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) index as high as 23.446 5 dB and 0.894 6, respectively. The highest scores reached for Underwater Color Image Quality Evaluation (UCIQE) and Underwater Image Quality Measurement (UIQM) are 0.582 6 and 3.068 9, respectively, which further demonstrate the algorithm's effectiveness in enhancing textural and structural features of underwater images and providing superior visual perception.

Key words: image processing, underwater image enhancement, Convolutional Modulation(CM), Spatial Collaboration(SC), encoding and decoding structure