1 |
刘从军, 徐佳陈, 肖志勇, 等. 基于深度学习的心脏核磁共振图像自动分割算法. 计算机工程与科学, 2022, 44(9): 1646- 1654.
URL
|
|
LIU C J, XU J C, XIAO Z Y, et al. An automatic cardiac magnetic resonance image segmentation algorithm based on deep learning. Computer Engineering & Science, 2022, 44(9): 1646- 1654.
URL
|
2 |
HESAMIAN M H, JIA W J, HE X J, et al. Deep learning techniques for medical image segmentation: achievements and challenges. Journal of Digital Imaging, 2019, 32(4): 582- 596.
doi: 10.1007/s10278-019-00227-x
|
3 |
范馨月, 鲍泓, 潘卫国. 基于类别不平衡数据集的图像实例分割方法. 计算机工程, 2022, 48(12): 224- 231.
URL
|
|
FAN X Y, BAO H, PAN W G. Image instance segmentation method based on class-imbalanced dataset. Computer Engineering, 2022, 48(12): 224- 231.
URL
|
4 |
张重生, 陈杰, 李岐龙, 等. 深度对比学习综述. 自动化学报, 2023, 49(1): 15- 39.
URL
|
|
ZHANG C S, CHEN J, LI Q L, et al. Deep contrastive learning: a survey. Acta Automatica Sinica, 2023, 49(1): 15- 39.
URL
|
5 |
GRILL J B, STRUB F, ALTCHE F, et al. Bootstrap your own latent: a new approach to self-supervised learning[EB/OL]. [2023-06-11]. https://arxiv.org/abs/2006.07733.
|
6 |
CHAITANYA K, ERDIL E, KARANI N, et al. Contrastive learning of global and local features for medical image segmentation with limited annotations[EB/OL]. [2023-06-11]. http://arxiv.org/abs/2006.10511.
|
7 |
ZENG D W, WU Y W, HU X R, et al. Positional contrastive learning for volumetric medical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer International Publishing, 2021: 221-230.
|
8 |
XIANG J P, LI Z W, WANG W J, et al. Self-ensembling contrastive learning for semi-supervised medical image segmentation[EB/OL]. [2023-06-11]. https://arxiv.org/abs/2105.12924.
|
9 |
ZHANG S, ZHANG J J, TIAN B, et al. Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation. Medical Image Analysis, 2023, 83, 102656.
doi: 10.1016/j.media.2022.102656
|
10 |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683
|
11 |
KHENED M, KOLLERATHU V A, KRISHNAMURTHI G. Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. Medical Image Analysis, 2019, 51, 21- 45.
doi: 10.1016/j.media.2018.10.004
|
12 |
ZHU H Z, ROHLING R, SALCUDEAN S. Multi-task UNet: jointly boosting saliency prediction and disease classification on chest X-ray images[EB/OL]. [2023-06-11]. http://arxiv.org/abs/2202.07118.
|
13 |
WANG W G, ZHOU T F, YU F, et al. Exploring cross-image pixel contrast for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2021: 7283-7293.
|
14 |
GUTMANN U M, HYVARINEN A. Noise-contrastive estimation: a new estimation principle for unnormalized statistical models[C]//Proceedings of International Conference on Artificial Intelligence and Statistics, Washington D. C., USA: IEEE Press, 2010: 297-304.
|
15 |
ZHONG Y Y, YUAN B D, WU H, et al. Pixel contrastive-consistent semi-supervised semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2021: 7253-7262.
|
16 |
付海涛, 刘烁, 冯宇轩, 等. 基于对比学习方法的小样本学习. 吉林大学学报(理学版), 2023, 61(1): 111- 117.
URL
|
|
FU H T, LIU S, FENG Y X, et al. Few-shot learning based on contrastive learning method. Journal of Jilin University (Science Edition), 2023, 61(1): 111- 117.
URL
|
17 |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 9726-9735.
|
18 |
CHANG J H, ZHANG J, XU Y M, et al. Consistency-contrast learning for conceptual coding[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York, USA: ACM Press, 2022: 2681-2690.
|
19 |
BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514- 2525.
doi: 10.1109/TMI.2018.2837502
|
20 |
TANABE Y, ISHIDA T, ETO H, et al. Evaluation of the correlation between prostatic displacement and rectal deformation using the Dice similarity coefficient of the rectum[J]. Medical Dosimetry, 2019, 44(4): 39-43.
|
21 |
HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGE W J. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850- 863.
doi: 10.1109/34.232073
|
22 |
PATHAK D, KRÄHENBÜHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 2536-2544.
|
23 |
|
24 |
ZHANG Y Z, YANG L, CHEN J X, et al. Deep adversarial networks for biomedical image segmentation utilizing unannotated images[M]. Berlin, Germany: Springer International Publishing, 2017.
|