1 |
钱政, 裴岩, 曹利宵, 等. 风电功率预测方法综述. 高电压技术, 2016, 42 (4): 1047- 1060.
|
|
QIAN Z , PEI Y , CAO L X , et al. Review of wind power forecasting method. High Voltage Engineering, 2016, 42 (4): 1047- 1060.
|
2 |
廖雪超, 伍杰平, 陈才圣. 结合注意力机制与LSTM的短期风电功率预测模型. 计算机工程, 2022, 48 (9): 286-297, 304.
URL
|
|
LIAO X C , WU J P , CHEN C S . Short-term wind power prediction model combining attention mechanism and LSTM. Computer Engineering, 2022, 48 (9): 286-297, 304.
URL
|
3 |
WANG G , JIA R , LIU J H , et al. A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning. Renewable Energy, 2020, 145, 2426- 2434.
doi: 10.1016/j.renene.2019.07.166
|
4 |
唐新姿, 顾能伟, 黄轩晴, 等. 风电功率短期预测技术研究进展. 机械工程学报, 2022, 58 (12): 213- 236.
|
|
TANG X Z , GU N W , HUANG X Q , et al. Progress on short term wind power forecasting technology. Journal of Mechanical Engineering, 2022, 58 (12): 213- 236.
|
5 |
赵凌云, 刘友波, 沈晓东, 等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型. 电力系统保护与控制, 2022, 50 (1): 42- 50.
|
|
ZHAO L Y , LIU Y B , SHEN X D , et al. Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network. Power System Protection and Control, 2022, 50 (1): 42- 50.
|
6 |
殷豪, 董朕, 孟安波. 基于VMD-SE-IPSO-BNN的超短期风电功率预测. 电测与仪表, 2018, 55 (2): 45- 51.
|
|
YIN H , DONG Z , MENG A B . Ultra short-term wind power forecasting based on VMD-SE-IPSO-BNN. Electrical Measurement & Instrumentation, 2018, 55 (2): 45- 51.
|
7 |
王晓兰, 李辉. 基于EMD分解的风电场风速和输出功率年度预测. 太阳能学报, 2011, 32 (3): 301- 306.
|
|
WANG X L , LI H . Annual forecasting of wind speed and power in wind farm based on EMD. Acta Energiae Solaris Sinica, 2011, 32 (3): 301- 306.
|
8 |
王世谦, 苏娟, 杜松怀. 基于小波变换和神经网络的短期风电功率预测方法. 农业工程学报, 2010, 26 (S2): 125- 129.
|
|
WANG S Q , SU J , DU S H . A method of short-term wind power forecast based on wavelet transform and neural network. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26 (S2): 125- 129.
|
9 |
赵征, 汪向硕. 基于CEEMD和改进时间序列模型的超短期风功率多步预测. 太阳能学报, 2020, 41 (7): 352- 358.
|
|
ZHAO Z , WANG X S . Ultra-short-term multi-step wind power prediction based on ceemd and improved time series model. Acta Energiae Solaris Sinica, 2020, 41 (7): 352- 358.
|
10 |
周盛山, 汤占军, 王金轩, 等. EEMD和CNN-XGBoost在风电功率短期预测的应用研究. 电子测量技术, 2020, 43 (22): 55- 61.
|
|
ZHOU S S , TANG Z J , WANG J X , et al. Application of EEMD and CNN-XGBoost in short-term wind power prediction. Electronic Measurement Technology, 2020, 43 (22): 55- 61.
|
11 |
丁婷婷, 杨明, 于一潇, 等. 基于误差修正的短期风电功率集成预测方法. 高电压技术, 2022, 48 (2): 488- 496.
|
|
DING T T , YANG M , YU Y X , et al. Short-term wind power integration prediction method based on error correction. High Voltage Engineering, 2022, 48 (2): 488- 496.
|
12 |
周洪煜, 曾济贫, 王照阳, 等. 基于混沌DNA遗传算法与PSO组合优化的RNN短期风电功率预测. 电力系统保护与控制, 2013, 41 (2): 144- 149.
|
|
ZHOU H Y , ZENG J P , WANG Z Y , et al. Ridgelet neural network model for short-term wind power forecasting based on the combination of chaos DNA genetic and particle swarm optimization algorithm. Power System Protection and Control, 2013, 41 (2): 144- 149.
|
13 |
朱乔木, 李弘毅, 王子琪, 等. 基于长短期记忆网络的风电场发电功率超短期预测. 电网技术, 2017, 41 (12): 3797- 3802.
|
|
ZHU Q M , LI H Y , WANG Z Q , et al. Short-term wind power forecasting based on LSTM. Power System Technology, 2017, 41 (12): 3797- 3802.
|
14 |
高鹭, 孔繁苗, 张飞, 等. 基于IPSO-BiLSTM-AM模型的超短期风电功率预测方法. 智慧电力, 2022, 50 (4): 27- 34.
|
|
GAO L , KONG F M , ZHANG F , et al. Ultra short-term wind power prediction method based on IPSO-BiLSTM-AM model. Smart Power, 2022, 50 (4): 27- 34.
|
15 |
SHAHID F , ZAMEER A , MUNEEB M . A novel genetic LSTM model for wind power forecast. Energy, 2021, 223, 120069.
|
16 |
CHEN Y F , ZHAO H , ZHOU R , et al. CNN-BiLSTM short-term wind power forecasting method based on feature selection. IEEE Journal of Radio Frequency Identification, 2022, 6, 922- 927.
|
17 |
陈申, 叶小岭, 熊雄, 等. 基于天鹰优化算法的短期风电功率区间预测. 重庆理工大学学报, 2023, 37 (8): 304- 314.
|
18 |
DEVI A S , MARAGATHAM G , BOOPATHI K , et al. RETRACTED ARTICLE: hourly day-ahead wind powerforecasting with the EEMD-CSO-LSTM-EFG deep learning technique. Soft Computing, 2020, 24 (16): 12391- 12411.
|
19 |
YANG X S, DEB S. Cuckoo search via Lévy flights[C]//Proceedings of the World Congress on Nature & Biologically Inspired Computing(NaBIC). Washington D. C., USA: IEEE Press, 2009: 210-214.
|
20 |
DING Y F , CHEN Z J , ZHANG H W , et al. A short-term wind power prediction model based on CEEMD and WOA-KELM. Renewable Energy, 2022, 189, 188- 198.
URL
|
21 |
MIRJALILI S , LEWIS A . The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67.
|
22 |
武新章, 梁祥宇, 朱虹谕, 等. 基于CEEMDAN-GRA-PCC-ATCN的短期风电功率预测. 山东大学学报(工学版), 2022, 52 (6): 146- 156.
|
|
WU X Z , LIANG X Y , ZHU H Y , et al. Short-term wind power prediction based on CEEMDAN-GRA-PCC-ATCN. Journal of Shandong University (Engineering Science), 2022, 52 (6): 146- 156.
|
23 |
XUE J K , SHEN B . Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. The Journal of Supercomputing, 2023, 79 (7): 7305- 7336.
|
24 |
LI J T, GENG D, ZHANG P, et al. Ultra-short term wind power forecasting based on LSTM neural network[C]//Proceedings of the IEEE 3rd International Electrical and Energy Conference(CIEEC). Washington D. C., USA: IEEE Press, 2019: 1815-1818.
|
25 |
魏鹏飞, 樊小朝, 史瑞静, 等. 基于改进麻雀搜索算法优化支持向量机的短期光伏发电功率预测. 热力发电, 2021, 50 (12): 74- 79.
|
|
WEI P F , FAN X C , SHI R J , et al. Short-term photovoltaic power generation forecast based on improved sparrow search algorithm optimized support vector machine. Thermal Power Generation, 2021, 50 (12): 74- 79.
|
26 |
王金锋, 杨宇琦, 温栋, 等. 基于GA-BP和RBF的风力发电时间序列混沌预测组合模型. 电网与清洁能源, 2022, 38 (11): 117- 125.
|
|
WANG J F , YANG Y Q , WEN D , et al. A combined model of chaos prediction of wind power generation time series based on GA-BP and RBF. Power System and Clean Energy, 2022, 38 (11): 117- 125.
|