[1] PENG H Y, XU L, BING L D, et al.Knowing What, How and Why:a near complete solution for aspect-based sentiment analysis[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2020:8600-8607. [2] 张佳慧.融合位置信息与注意力机制的方面级情感分析研究[D].长春:吉林大学, 2021. ZHANG J H.Research on aspective-level sentiment analysis that merge position information and attention mechanism[D].Changchun:Jilin University, 2021.(in Chinese) [3] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al.SemEval-2014 task 4:aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation.Stroudsburg, USA:Association for Computational Linguistics, 2014:27-35. [4] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al.SemEval-2015 task 12:aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation.Stroudsburg, USA:Association for Computational Linguistics, 2015:486-495. [5] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al.SemEval-2016 task 5:aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation.Stroudsburg, USA:Association for Computational Linguistics, 2016:19-30. [6] LI K, CHEN C B, QUAN X J, et al.Conditional augmentation for aspect term extraction via masked sequence-to-sequence generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2020:7056-7066. [7] CHEN Z, QIAN T Y.Enhancing aspect term extraction with soft prototypes[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2020:2107-2117. [8] CHEN Z, QIAN T Y.Bridge-based active domain adaptation for aspect term extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2021:317-327. [9] SUN K, ZHANG R C, MENSAH S, et al.Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2019:5679-5688. [10] ZHANG C, LI Q C, SONG D W.Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2019:4568-4578. [11] TANG H, JI D H, LI C L, et al.Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2020:6578-6588. [12] FAN Z F, WU Z, DAI X Y, et al.Target-oriented opinion words extraction with target-fused neural sequence labeling[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:2509-2518. [13] BEN VEYSEH A P, NOURI N, DERNONCOURT F, et al.Introducing syntactic structures into target opinion word extraction with deep learning[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2020:8947-8956. [14] WANG W Y, PAN S J, DAHLMEIER D, et al.Coupled multi-layer attentions for co-extraction of aspect and opinion terms[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2017:3316-3322. [15] YU J F, JIANG J, XIA R.Global inference for aspect and opinion terms co-extraction based on multi-task neural networks[J].IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(1):168-177. [16] DAI H L, SONG Y Q.Neural aspect and opinion term extraction with mined rules as weak supervision[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:5268-5277. [17] XU L, LI H, LU W, et al.Position-aware tagging for aspect sentiment triplet extraction[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2020:2339-2349. [18] YAN H, DAI J Q, JI T, et al.A unified generative framework for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2021:2416-2429. [19] ZHANG W X, LI X, DENG Y, et al.Towards generative aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2021:504-510. [20] CHEN S W, WANG Y, LIU J, et al.Bidirectional machine reading comprehension for aspect sentiment triplet extraction[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2021:12666-12674. [21] MAO Y, SHEN Y, YU C, et al.A joint training dual-MRC framework for aspect based sentiment analysis[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2021:13543-13551. [22] XU L, CHIA Y K, BING L D.Learning span-level interactions for aspect sentiment triplet extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2021:4755-4766. [23] ZHANG M, QIAN T.Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2020:3540-3549. [24] LI R, CHEN H, FENG F, et al.Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2021:6319-6329. [25] 施荣华, 金鑫, 胡超.基于图注意力网络的方面级别文本情感分析[J].计算机工程, 2022, 48(2):34-39. SHI R H, JIN X, HU C.Aspect-level text emotion analysis based on graph attention network[J].Computer Engineering, 2022, 48(2):34-39.(in Chinese) [26] LI X, BING L D, LI P J, et al.A unified model for opinion target extraction and target sentiment prediction[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2019:6714-6721. [27] LUO H S, LI T R, LIU B, et al.DOER:dual cross-shared RNN for aspect term-polarity co-extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:591-601. |