1 |
韩磊, 高永彬, 史志才. 基于稀疏Transformer的雷达点云三维目标检测. 计算机工程, 2022, 48 (11): 104-110, 144.
URL
|
|
HAN L, GAO Y B, SHI Z C. Three-dimensional object detection of radar point cloud based on sparse Transformer. Computer Engineering, 2022, 48 (11): 104-110, 144.
URL
|
2 |
窦允冲, 侯进, 曾雷鸣, 等. 基于反馈机制与空洞卷积的道路小目标检测网络. 计算机工程, 2023, 49 (1): 287- 294.
URL
|
|
DOU Y C, HOU J, ZENG L M, et al. Road small target detection network based on feedback mechanism and dilated convolution. Computer Engineering, 2023, 49 (1): 287- 294.
URL
|
3 |
LI Z Q, WANG W H, LI H Y, et al. BEVFormer: learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 1-18.
|
4 |
雷嘉铭, 俞辉, 夏羽, 等. 基于多方向特征融合的室外三维目标检测方法. 计算机工程, 2023, 49 (11): 238- 246.
URL
|
|
LEI J M, YUI H, XIA Y, et al. Outdoor 3D object detection method based on multi-direction features fusion. Computer Engineering, 2023, 49 (11): 238- 246.
URL
|
5 |
李朝, 兰海, 魏宪. 基于注意力的毫米波-激光雷达融合目标检测. 计算机应用, 2021, 41 (7): 2137- 2144.
doi: 10.11772/j.issn.1001-9081.2020081334
|
|
LI C, LAN H, WEI X. Attention-based object detection with millimeter wave radar-lidar fusion. Computer Applications, 2021, 41 (7): 2137- 2144.
doi: 10.11772/j.issn.1001-9081.2020081334
|
6 |
WANG Y, GUIZILINI V, ZHANG T Y, et al. DETR3D: 3D object detection from multi-view images via 3D-to-2D queries[C]//Proceedings of Conference on Robot Learning. New York, USA: ACM Press, 2022: 1-10.
|
7 |
ASHISH V, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
8 |
QIAN R, LAI X, LI X R. 3D object detection for autonomous driving: a survey. Pattern Recognition, 2022, 130, 108796.
doi: 10.1016/j.patcog.2022.108796
|
9 |
WANG Y J, MAO Q Y, ZHU H Q, et al. Multi-modal 3D object detection in autonomous driving: a survey. International Journal of Computer Vision, 2023, 131, 1- 31.
doi: 10.1007/s11263-022-01693-7
|
10 |
WANG C W, MA C, ZHU M, et al. PointAugmenting: cross-modal augmentation for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 11794-11803.
|
11 |
YOO J H, KIM Y, KIM J, et al. 3D-CVF: generating joint camera and lidar features using cross-view spatial feature fusion for 3D object detection[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 720-736.
|
12 |
YIN T, ZHOU X, KRÄHENBÜHL P. Multimodal virtual point 3D detection. Advances in Neural Information Processing Systems, 2021, 34, 16494- 16507.
|
13 |
JACOBSON P, ZHOU Y, ZHAN W, et al. Center feature fusion: selective multi-sensor fusion of center-based objects[C]//Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Washington D. C., USA: IEEE Press, 2023: 8312-8318.
|
14 |
LI Y, CHEN Y, QI X, et al. Unifying voxel-based representation with transformer for 3D object detection. Advances in Neural Information Processing Systems, 2022, 35, 18442- 18455.
URL
|
15 |
LIU Z, TANG H, AMINI A, et al. BEVFusion: multi-task multi-sensor fusion with unified bird's-eye view representation[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2023: 2774-2781.
|
16 |
LIANG T, XIE H, YU K, et al. BEVFusion: a simple and robust LiDAR-camera fusion framework. Advances in Neural Information Processing Systems, 2022, 35, 10421- 10434.
|
17 |
ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4490-4499.
|
18 |
PHILION J, FIDLER S. Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 194-210.
|
19 |
CHEN X Y, ZHANG T Y, WANG Y, et al. FUTR3D: a unified sensor fusion framework for 3D detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 172-181.
|
20 |
JIANG Q, SUN H, ZHANG X. SemanticBEVFusion: rethink LiDAR-camera fusion in unified bird's-eye view representation for 3D object detection[EB/OL]. [2023-09-20]. http://arXivpreprintarXiv:2212.04675.
|
21 |
WANG X, LEI J, LAN H, et al. DuEqNet: dual-equivariance network in outdoor 3D object detection for autonomous driving[EB/OL]. [2023-09-20]. http://arXivpreprintarXiv:2302.13577, 2023.
|
22 |
WU H, WEN C, LI W, et al. Transformation-equivariant 3D object detection for autonomous driving[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2023: 2795-2802.
|
23 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11621-11631.
|
24 |
|
25 |
LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 12697-12705.
|
26 |
CHEN Q, SUN L, WANG Z X, et al. Object as hotspots: an anchor-free 3D object detection approach via firing of hotspots[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 68-84.
|
27 |
YIN T W, ZHOU X Y, KRAHENBUHL P. Center-based 3D object detection and tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 11784-11793.
|
28 |
YAN Y, MAO Y X, LI B. SECOND: sparsely embedded convolutional detection. Sensors, 2018, 18 (10): 3337.
doi: 10.3390/s18103337
|
29 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
30 |
LIANG T T, CHU X J, LIU Y D, et al. CBNet: a composite backbone network architecture for object detection. IEEE Transactions on Image Processing, 2022, 31, 6893- 6906.
doi: 10.1109/TIP.2022.3216771
|
31 |
HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
32 |
邹慧海, 侯进. 改进SSD算法的道路小目标检测研究. 计算机工程, 2022, 48 (5): 281- 288.
URL
|
|
ZOU H H, HOU J. Research on road small target detection with improved SSD algorithm. Computer Engineering, 2022, 48 (5): 281- 288.
URL
|
33 |
BAI X Y, HU Z Y, ZHU X G, et al. Transfusion: robust LiDAR-camera fusion for 3D object detection with Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 1090-1099.
|
34 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the KITTI vision benchmark suite[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 3354-3361.
|
35 |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset. International Journal of Robotics Research, 2013, 32 (11): 1231- 1237.
doi: 10.1177/0278364913491297
|
36 |
ZHU B J, JIANG Z K, ZHOU X X, et al. Class-balanced grouping and sampling for point cloud 3d object detection[EB/OL]. [2023-09-20]. https://arxiv.org/abs/1908.09492.
|