1 |
KUMAR S, GUPTA S, ARORA S. Research trends in network-based intrusion detection systems: a review. IEEE Access, 2021, 9, 157761- 157779.
doi: 10.1109/ACCESS.2021.3129775
|
2 |
沈记全, 魏坤. 融合残差网络的CR-BiGRU入侵检测模型. 吉林大学学报(理学版), 2023, 61 (2): 353- 361.
|
|
SHEN J Q, WEI K. CR-BiGRU intrusion detection model based on residual network. Journal of Jilin University(Science Edition), 2023, 61 (2): 353- 361.
|
3 |
ALSAEDI A, TARI Z, MAHMUD R, et al. USMD: unsupervised misbehaviour detection for multi-sensor data. IEEE Transactions on Dependable and Secure Computing, 2023, 20 (1): 724- 739.
doi: 10.1109/TDSC.2022.3143493
|
4 |
LI X H, HU Z Y, XU M F, et al. Transfer learning based intrusion detection scheme for Internet of vehicles. Information Sciences, 2021, 547, 119- 135.
doi: 10.1016/j.ins.2020.05.130
|
5 |
周杰英, 贺鹏飞, 邱荣发, 等. 融合随机森林和梯度提升树的入侵检测研究. 软件学报, 2021, 32 (10): 3254- 3265.
doi: 10.13328/j.cnki.jos.006062
|
|
ZHOU J Y, HE P F, QIU R F, et al. Research on intrusion detection based on random forest and gradient boosting tree. Journal of Software, 2021, 32 (10): 3254- 3265.
doi: 10.13328/j.cnki.jos.006062
|
6 |
ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: a review of methods and applications. AI Open, 2020, 1, 57- 81.
doi: 10.1016/j.aiopen.2021.01.001
|
7 |
JIANG W W. Graph-based deep learning for communication networks: a survey. Computer Communications, 2022, 185, 40- 54.
doi: 10.1016/j.comcom.2021.12.015
|
8 |
|
9 |
|
10 |
RASKOVALOV A, GABDULLIN N, DOLMATOV V. Investigation and rectification of NIDS datasets and standardized feature set derivation for network attack detection with graph neural networks[EB/OL]. [2023-08-17]. http://arxiv.org/abs/2212.13994.
|
11 |
ZHANG T, SHAN H R, LITTLE M A. Causal GraphSAGE: a robust graph method for classification based on causal sampling. Pattern Recognition, 2022, 128, 108696.
doi: 10.1016/j.patcog.2022.108696
|
12 |
SARHAN M, LAYEGHY S, MOUSTAFA N, et al. NetFlow datasets for machine learning-based network intrusion detection systems[C]//Proceedings of International Conference on Big Data Technologies and Applications. Berlin, Germany: Springer, 2021: 117-135.
|
13 |
KORONIOTIS N, MOUSTAFA N, SITNIKOVA E, et al. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Generation Computer Systems, 2019, 100, 779- 796.
doi: 10.1016/j.future.2019.05.041
|
14 |
ALSAEDI A, MOUSTAFA N, TARI Z, et al. TON_IoT telemetry dataset: a new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access, 2862, 8, 165130- 165150.
|
15 |
LO W W, LAYEGHY S, SARHAN M, et al. E-GraphSAGE: a graph neural network based intrusion detection system for IoT[C]//Proceedings of the IEEE/IFIP Network Operations and Management Symposium. Washington D. C., USA: IEEE Press, 2022: 1-9.
|
16 |
|
17 |
CHANG L Y, BRANCO P. Graph-based solutions with residuals for intrusion detection: the modified E-GraphSAGE and E-ResGAT algorithms[EB/OL]. [2023-08-17]. http://arxiv.org/abs/2111.13597.
|
18 |
CAVILLE E, LO W W, LAYEGHY S, et al. Anomal-E: a self-supervised network intrusion detection system based on graph neural networks. Knowledge-Based Systems, 2022, 258, 110030.
doi: 10.1016/j.knosys.2022.110030
|
19 |
ZHANG Y W, ZHANG Y C, WU Y, et al. TPE-NIDS: uses graph neural networks to detect malicious traffic[C]//Proceedings of the 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC). Washington D. C., USA: IEEE Press, 2022: 949-958.
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
GAO H Y, JI S W. Graph U-Nets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (9): 4948- 4960.
|
25 |
LECUN Y A, BOTTOU L, ORR G B, et al. Efficient BackProp[M]. Berlin, Germany: Springer, 2012.
|
26 |
MOUSTAFA N, SLAY J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proceedings of the Military Communications and Information Systems Conference (MilCIS). Washington D. C., USA: IEEE Press, 2015: 1-6.
|
27 |
TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]//Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications. Washington D. C., USA: IEEE Press, 2009: 1-6.
|
28 |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[EB/OL]. [2023-08-17]. http://arxiv.org/abs/1912.01703.
|
29 |
SONG D, YUAN X Y, LI Q L, et al. Intrusion detection model using gene expression programming to optimize parameters of convolutional neural network for energy Internet. Applied Soft Computing, 2023, 134, 109960.
doi: 10.1016/j.asoc.2022.109960
|
30 |
王振东, 徐振宇, 李大海, 等. 面向入侵检测的元图神经网络构建与分析. 自动化学报, 2023, 49 (7): 1530- 1548.
doi: 10.16383/j.aas.c200819
|
|
WANG Z D, XU Z Y, LI D H, et al. Construction and analysis of meta graph neural network for intrusion detection. Acta Automatica Sinica, 2023, 49 (7): 1530- 1548.
doi: 10.16383/j.aas.c200819
|
31 |
石磊, 张吉涛, 高宇飞, 等. 基于Transformer与BiLSTM的网络流量入侵检测. 计算机工程, 2023, 49 (3): 29-36, 57.
URL
|
|
SHI L, ZHANG J T, GAO Y F, et al. Intrusion detection of network traffic based on transformer and BiLSTM. Computer Engineering, 2023, 49 (3): 29-36, 57.
URL
|
32 |
张玲, 张建伟, 桑永宣, 等. 基于随机森林与人工免疫的入侵检测算法. 计算机工程, 2020, 46 (8): 146- 152.
URL
|
|
ZHANG L, ZHANG J W, SANG Y X, et al. Intrusion detection algorithm based on random forest and artificial immunity. Computer Engineering, 2020, 46 (8): 146- 152.
URL
|
33 |
刘金硕, 詹岱依, 邓娟, 等. 基于深度神经网络和联邦学习的网络入侵检测. 计算机工程, 2023, 49 (1): 15-21, 30.
URL
|
|
LIU J S, ZHAN D Y, DENG J, et al. Network intrusion detection based on deep neural network and federated learning. Computer Engineering, 2023, 49 (1): 15-21, 30.
URL
|
34 |
WANG S Y, XU W X, LIU Y W. Res-TranBiLSTM: an intelligent approach for intrusion detection in the Internet of Things. Computer Networks, 2023, 235, 109982.
doi: 10.1016/j.comnet.2023.109982
|
35 |
HINTON G, VAN DER MAATEN L. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9 (86): 2579- 2605.
URL
|