1 |
|
|
|
2 |
|
|
|
3 |
丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测. 软件学报, 2020, 31(3): 726- 747.
URL
|
|
DING X O, YU S J, WANG M X, et al. Anomaly detection on industrial time series based on correlation analysis. Journal of Software, 2020, 31(3): 726- 747.
URL
|
4 |
严莉, 张凯, 徐浩, 等. 基于图注意力机制和Transformer的异常检测. 电子学报, 2022, 50(4): 900- 908.
URL
|
|
YAN L, ZHANG K, XU H, et al. Abnormal detection based on graph attention mechanisms and transformer. Acta Electronica Sinica, 2022, 50(4): 900- 908.
URL
|
5 |
肖进胜, 郭浩文, 谢红刚, 等. 监控视频异常行为检测的概率记忆自编码网络. 软件学报, 2023, 34(9): 4362- 4377.
URL
|
|
XIAO J S, GUO H W, XIE H G, et al. Probabilistic memory auto-encoding network for abnormal behavior detection in surveillance videos. Journal of Software, 2023, 34(9): 4362- 4377.
URL
|
6 |
朱红蕾, 朱昶胜, 徐志刚. 人体行为识别数据集研究进展. 自动化学报, 2018, 44(6): 978- 1004.
URL
|
|
ZHU H L, ZHU C S, XU Z G. Research advances on human activity recognition datasets. Acta Automatica Sinica, 2018, 44(6): 978- 1004.
URL
|
7 |
杨静, 吴成茂, 周流平. 基于全局-局部自注意力网络的视频异常检测方法. 通信学报, 2023, 44(8): 241- 250.
URL
|
|
YANG J, WU C M, ZHOU L P. Novel video anomaly detection method based on global-local self-attention network. Journal on Communications, 2023, 44(8): 241- 250.
URL
|
8 |
何平, 李刚, 李慧斌. 基于深度学习的视频异常检测方法综述. 计算机工程与科学, 2022, 44(9): 1620- 1629.
doi: 10.3969/j.issn.1007-130X.2022.09.012
|
|
HE P, LI G, LI H B. A survey on deep learning based video anomaly detection. Computer Engineering & Science, 2022, 44(9): 1620- 1629.
doi: 10.3969/j.issn.1007-130X.2022.09.012
|
9 |
CHONG Y S, TAY Y H. Abnormal event detection in videos using spatiotemporal autoencoder[C]∥Proceedings of International Symposium on Neural Networks. Berlin, Germany: Springer, 2017: 189-196.
|
10 |
YE M C, PENG X J, GAN W H, et al. AnoPCN: video anomaly detection via deep predictive coding network[C]∥Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 1805-1813.
|
11 |
LÜ H, CHEN C, CUI Z, et al. Learning normal dynamics in videos with meta prototype network[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 15425-15434.
|
12 |
ZAHEER M Z, MAHMOOD A, KHAN M H, et al. Generative cooperative learning for unsupervised video anomaly detection[C]∥Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 14744-14754.
|
13 |
SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]∥Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6479-6488.
|
14 |
ZHU Y, NEWSAM S. Motion-aware feature for improved video anomaly detection[C]∥Proceeding of the 30th British Machine Vision Conference. Cardiff, UK: British Machine Vision Association, 2019(19): 1-12.
|
15 |
ZHOU H, YU J Q, YANG W. Dual memory units with uncertainty regulation for weakly supervised video anomaly detection. Artificial Intelligence, 2023, 37(3): 3769- 3777.
|
16 |
ZHANG J G, QING L Y, MIAO J. Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection[C]∥Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2019: 4030-4034.
|
17 |
ZAHEER M Z, MAHMOOD A, ASTRID M, et al. CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection[C]∥Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 358-376.
|
18 |
WU P, LIU J. Learning causal temporal relation and feature discrimination for anomaly detection. IEEE Transactions on Image Processing, 2021, 30, 3513- 3527.
doi: 10.1109/TIP.2021.3062192
|
19 |
LI S, LIU F, JIAO L C. Self-training multi-sequence learning with transformer for weakly supervised video anomaly detection. Artificial Intelligence, 2022, 36(2): 1395- 1403.
|
20 |
WANG M M, XING J Z, MEI J B, et al. ActionCLIP: adapting language-image pretrained models for video action recognition. IEEE Transactions on Neural Networks and Learning Systems, 2024, 27(1): 1- 13.
|
21 |
YAO L W, HAN J H, WEN Y P, et al. DetCLIP: dictionary-enriched visual-concept paralleled pre-training for open-world detection[EB/OL]. [2024-02-10]. http://arxiv.org/abs/2209.09407v2.
|
22 |
MILLER G A. WordNet. Communications of the ACM, 1995, 38(11): 39- 41.
doi: 10.1145/219717.219748
|
23 |
PU Y J, WU X Y, YANG L L, et al. Learning prompt-enhanced context features for weakly-supervised video anomaly detection[EB/OL]. [2024-02-10]. http://arxiv.org/abs/2306.14451v2.
|
24 |
SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge. Artificial Intelligence, 2017, 31(1): 33- 42.
|
25 |
WASIM S T, NASEER M, KHAN S, et al. Vita-CLIP: video and text adaptive CLIP via multimodal prompting[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 23034-23044.
|
26 |
RADFORD A, KIM J W, HALAACY C, et al. Learning transferable visual models from natural language supervision[C]∥Proceedings of the 38th International Conference on Machine Learning Research. New York, USA: ACM Press, 2021: 139: 8748-8763.
|