1 |
CHEN Z , MIN H , WANG D , et al. A review of myoelectric control for prosthetic hand manipulation. Biomimetics (Basel, Switzerland), 2023, 8 (3): 328.
|
2 |
ZHENG M D , CROUCH M S , EGGLESTON M S . Surface electromyography as a natural human-machine interface: a review. IEEE Sensors Journal, 2022, 22 (10): 9198- 9214.
doi: 10.1109/JSEN.2022.3165988
|
3 |
STACHACZYK M , ATASHZAR S F , FARINA D . Adaptive spatial filtering of high-density EMG for reducing the influence of noise and artefacts in myoelectric control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28 (7): 1511- 1517.
doi: 10.1109/TNSRE.2020.2986099
|
4 |
潘文平, 范建中. 表面肌电图在康复医学中的一些应用. 中国康复, 2011, 26 (1): 59- 60.
|
|
PAN W P , FAN J Z . Some applications of surface electromyography in rehabilitation medicine. Chinese Journal of Rehabilitation, 2011, 26 (1): 59- 60.
|
5 |
LI K X , ZHANG J H , WANG L F , et al. A review of the key technologies for sEMG-based human-robot interaction systems. Biomedical Signal Processing and Control, 2020, 62, 102074.
doi: 10.1016/j.bspc.2020.102074
|
6 |
朱旭, 刘静, 董泽萍, 等. 基于表面肌电图手势动作意图识别的系统综述. 中国康复理论与实践, 2022, 28 (9): 1032- 1038.
|
|
ZHU X , LIU J , DONG Z P , et al. Gesture action intent recognition based on surface electromyography: a systematic review. Chinese Journal of Rehabilitation Theory and Practice, 2022, 28 (9): 1032- 1038.
|
7 |
GUERRERO F N , SPINELLI E M , HABERMAN M A . Analysis and simple circuit design of double differential EMG active electrode. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10 (3): 787- 795.
doi: 10.1109/TBCAS.2015.2492944
|
8 |
TRAN L , CHA H K . An ultra-low-power neural signal acquisition analog front-end IC. Microelectronics Journal, 2021, 107, 104950.
doi: 10.1016/j.mejo.2020.104950
|
9 |
GUERRERO F N , SPINELLI E M , GRASSO A D , et al. Double-differential amplifier for sEMG measurement by means of a current-mode approach. IEEE Access, 2022, 10, 45870- 45880.
doi: 10.1109/ACCESS.2022.3170409
|
10 |
CHEN F H , LI S L , HAN J L , et al. Review of lightweight deep convolutional neural networks. Archives of Computational Methods in Engineering, 2024, 31 (4): 1915- 1937.
doi: 10.1007/s11831-023-10032-z
|
11 |
ZABIHI S, RAHIMIAN E, ASIF A, et al. Light-weight CNN-attention based architecture for hand gesture recognition via electromyography[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D.C., USA: IEEE Press, 2023: 1-5.
|
12 |
LEELAKITTISIN B , TRAKULRUANGROJ M , SANGNARK S , et al. Enhanced lightweight CNN using joint classification with averaging probability for sEMG-based subject-independent hand gesture recognition. IEEE Sensors Journal, 2023, 23 (17): 20348- 20356.
doi: 10.1109/JSEN.2023.3296649
|
13 |
SACKINGER E , GUGGENBUHL W . A versatile building block: the CMOS differential difference amplifier. IEEE Journal of Solid-State Circuits, 1987, 22 (2): 287- 294.
doi: 10.1109/JSSC.1987.1052715
|
14 |
WU Y D , RUAN S J , LEE Y H . An ultra-low power surface EMG sensor for wearable biometric and medical applications. Biosensors (Basel), 2021, 11 (11): 411.
|
15 |
RANI P , PANCHOLI S , SHAW V , et al. Enhancing gesture classification using active EMG band and advanced feature extraction technique. IEEE Sensors Journal, 2024, 24 (4): 5246- 5255.
doi: 10.1109/JSEN.2023.3344700
|
16 |
VIJAYVARGIYA A , SINGH P , KUMAR R , et al. Hardware implementation for lower limb surface EMG measurement and analysis using explainable AI for activity recognition. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1- 9.
|
17 |
PEH W Y X , RACZKOWSKA M N , TEH Y , et al. Closed-loop stimulation of the pelvic nerve for optimal micturition. Journal of Neural Engineering, 2018, 15 (6): 066009.
doi: 10.1088/1741-2552/aadee9
|
18 |
WANG C , QIN Y , JIN H , et al. A low power cardiovascular healthcare system with cross-layer optimization from sensing patch to cloud platform. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13 (2): 314- 329.
doi: 10.1109/TBCAS.2019.2892334
|
19 |
CHEN X B, ZHOU Y X, WANG H P, et al. Design of sEMG-detecting circuit for EMG-Bridge[C]// Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Washington D.C., USA: IEEE Press, 2017: 382-385.
|
20 |
XUE J , LAI K W C . Dynamic gripping force estimation and reconstruction in EMG-based human-machine interaction. Biomedical Signal Processing and Control, 2023, 80, 104216.
doi: 10.1016/j.bspc.2022.104216
|
21 |
FENG D L , ZHOU C , HUANG J P , et al. Design and implementation of gesture recognition system based on flex sensors. IEEE Sensors Journal, 2023, 23 (24): 31389- 31398.
doi: 10.1109/JSEN.2023.3324503
|
22 |
ZUMBAHLEN H . Linear circuit design handbook. Washington D.C., USA: [s. l.], 2011.
|
23 |
BABIUCH M, FOLTYNEK P, SMUTNY P. Using the ESP32 microcontroller for data processing[C]//Proceedings of the 20th International Carpathian Control Conference. Washington D.C., USA: IEEE Press, 2019: 1-6.
|
24 |
DONG D B , MA C , WANG M , et al. A low-cost framework for the recognition of human motion gait phases and patterns based on multi-source perception fusion. Engineering Applications of Artificial Intelligence, 2023, 120, 105886.
doi: 10.1016/j.engappai.2023.105886
|
25 |
GAO J W , MA C , WU D , et al. Recognition of human motion intentions based on Bayesian-optimized XGBOOST algorithm. Journal of Sensors, 2022, 2022, 3015645.
|
26 |
CAO W J , MA Y , CHEN C J , et al. Hardware circuits design and performance evaluation of a soft lower limb exoskeleton. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16 (3): 384- 394.
doi: 10.1109/TBCAS.2022.3173965
|
27 |
AMIN M S , RIZVI S T H , HOSSAIN M M . A comparative review on applications of different sensors for sign language recognition. Journal of Imaging, 2022, 8 (4): 98.
doi: 10.3390/jimaging8040098
|
28 |
GARNER B A , PANDY M G . Estimation of musculotendon properties in the human upper limb. Annals of Biomedical Engineering, 2003, 31 (2): 207- 220.
doi: 10.1114/1.1540105
|
29 |
XIONG D Z , ZHANG D H , ZHAO X G , et al. Deep learning for EMG-based human-machine interaction: a review. CAA Journal of Automatica Sinica, 2021, 8 (3): 512- 533.
|
30 |
LU J, LIANG P, RHIM J C, et al. EffiE: efficient convolutional neural network for real-time EMG pattern recognition system on edge devices[C]//Proceedings of the 11th International IEEE/EMBS Conference on Neural Engineering. Washington D.C., USA: IEEE Press, 2023: 1-5.
|
31 |
KANG S , KIM H , PARK C , et al. sEMG-based hand gesture recognition using binarized neural network. Sensors (Basel, Switzerland), 2023, 23 (3): 1436.
doi: 10.3390/s23031436
|
32 |
DE SILVA A, PERERA M V, WICKRAMASINGHE K, et al. Real-time hand gesture recognition using temporal muscle activation maps of multi-channel semg signals[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D.C., USA: IEEE Press, 2020: 1299-1303.
|