1 |
张勇, 刘时银, 王欣. 青藏高原及周边冰川区表碛影响研究进展. 冰川冻土, 2022, 44 (3): 900- 913.
|
|
ZHANG Y , LIU S Y , WANG X . Debris-cover effect in the Tibetan Plateau and surroundings: a review. Journal of Glacology and Ceocryology, 2022, 44 (3): 900- 913.
|
2 |
CAUVY-FRAUNIÉ S , ANDINO P , ESPINOSA R , et al. Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nature Communications, 2016, 7, 12025.
doi: 10.1038/ncomms12025
|
3 |
冀琴, 董军, 刘睿, 等. 1990-2015年喜马拉雅山冰川变化的遥感监测及动因分析. 地理科学, 2020, 40 (3): 486- 496.
|
|
JI Q , DONG J , LIU R , et al. Remote sensing monitoring of glacier changes in the Himalayas and dynamic analysis from 1990 to 2015. Scientia Geographica Sinica, 2020, 40 (3): 486- 496.
|
4 |
HOLOBÂCǍ I H , TIELIDZE L G , IVAN K , et al. Multi-sensor remote sensing to map glacier debris cover in the Greater Caucasus, Georgia. Journal of Glaciology, 2021, 67 (264): 685- 696.
doi: 10.1017/jog.2021.47
|
5 |
SHUKLA A , ARORA M K , GUPTA R P . Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 2010, 114 (7): 1378- 1387.
doi: 10.1016/j.rse.2010.01.015
|
6 |
RASTNER P , BOLCH T , NOTARNICOLA C , et al. A comparison of pixel- and object-based glacier classification with optical satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (3): 853- 862.
doi: 10.1109/JSTARS.2013.2274668
|
7 |
ROBSON B A , BOLCH T , MACDONELL S , et al. Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sensing of Environment, 2020, 250, 112033.
doi: 10.1016/j.rse.2020.112033
|
8 |
MITKARI K V , ARORA M K , TIWARI R K , et al. Large-scale debris cover glacier mapping using multisource object-based image analysis approach. Remote Sensing, 2022, 14 (13): 3202.
doi: 10.3390/rs14133202
|
9 |
JAWAK S D , WANKHEDE S F , LUIS A J , et al. Effect of image-processing routines on geographic object-based image analysis for mapping glacier surface facies from svalbard and the Himalayas. Remote Sensing, 2022, 14 (17): 4403.
doi: 10.3390/rs14174403
|
10 |
谢树春, 陈志华, 盛斌. 增强细节的RGB-IR多通道特征融合语义分割网络. 计算机工程, 2022, 48 (10): 230-237, 244.
URL
|
|
XIE S C , CHEN Z H , SHENG B . An enhanced detail-based semantic segmentation network for RGB-IR multi-channel feature fusion. Computer Engineering, 2022, 48 (10): 230-237, 244.
URL
|
11 |
白俊卿, 韩柏迅, 张丰侠. 基于深度学习的无人机图像语义分割算法研究. 计算机工程, 2023, 49 (4): 233- 239.
URL
|
|
BAI J Q , HAN B X , ZHANG F X . Research on deep learning based semantic segmentation algorithm for UAV images. Computer Engineering, 2023, 49 (4): 233- 239.
URL
|
12 |
范吉延, 柯长青, 姚国慧, 等. 基于深度学习的全极化SAR影像冰川边界识别. 遥感学报, 2023, 27 (9): 2098- 2113.
|
|
FAN J Y , KE C C , YAO G H , et al. Deep learning-based glacier boundary recognition on fully polarized SAR imagery. National Remote Sensing Bulletin, 2023, 27 (9): 2098- 2113.
|
13 |
罗元, 沈吉祥, 李方宇. 动态环境下基于深度学习的视觉SLAM研究综述. 半导体光电, 2024, 45 (1): 1- 10.
|
|
LUO Y , SHEN J X , LI F Y . Review of visual SLAM research based on deep learning in dynamic environments. Semiconductor Optoelectronics, 2024, 45 (1): 1- 10.
|
14 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 3431-3440.
|
15 |
|
16 |
BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615
|
17 |
|
18 |
NIJHAWAN R , DAS J , BALASUBRAMANIAN R . A hybrid CNN+Random forest approach to delineate debris covered glaciers using deep features. Journal of the Indian Society of Remote Sensing, 2018, 46 (6): 981- 989.
doi: 10.1007/s12524-018-0750-x
|
19 |
XIE Z Y , HARITASHYA U K , ASARI V K , et al. GlacierNet: a deep-learning approach for debris-covered glacier mapping. IEEE Access, 2020, 8, 83495- 83510.
doi: 10.1109/ACCESS.2020.2991187
|
20 |
MAROCHOV M , STOKES C R , CARBONNEAU P E . Image classification of marine-terminating outlet glaciers in Greenland using deep learning methods. The Cryosphere, 2021, 15 (11): 5041- 5059.
doi: 10.5194/tc-15-5041-2021
|
21 |
TIAN S Z , DONG Y S , FENG R Y , et al. Mapping mountain glaciers using an improved U-Net model with cSE. International Journal of Digital Earth, 2022, 15 (1): 463- 477.
doi: 10.1080/17538947.2022.2036834
|
22 |
|
23 |
LIN R S , MEI G , XU N X . Accurate and automatic mapping of complex debris-covered glacier from remote sensing imagery using deep convolutional networks. Geological Journal, 2023, 58 (6): 2254- 2267.
doi: 10.1002/gj.4615
|
24 |
KHAN A A , JAMIL A , HUSSAIN D , et al. Deep learning-based framework for monitoring of debris-covered glacier from remotely sensed images. Advances in Space Research, 2023, 71 (7): 2978- 2989.
doi: 10.1016/j.asr.2022.05.060
|
25 |
WU F , GOURMELON N , SEEHAUS T , et al. AMD-HookNet for glacier front segmentation. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 3245419.
|
26 |
ZHU Q , GUO H D , ZHANG L , et al. GLA-STDeepLab: SAR enhancing glacier and ice shelf front detection using swin-TransDeepLab with global-local attention. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 3324404.
|
27 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 801-818.
|
28 |
|
29 |
|
30 |
|