[1] HE H B,GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge& Data Engineering, 2009, 21(9):1263-1284. [2] 赵楠,张小芳,张利军.不平衡数据分类研究综述[J].计算机科学, 2018, 45(S1):22-27, 57. ZHAO N, ZHANG X F, ZHANG L J. Overview of imbalanced data classification[J]. Computer Science, 2018, 45(S1):22-27, 57.(in Chinese) [3] YUAN X H, XIE L J, ABOUELENIEN M. A regularized ensemble framework of deep learning for cancer detection from multi-class,imbalanced training data[J]. Pattern Recognition, 2018, 77:160-172. [4] YANG W J. Based on a semi-supervised fuzzy clustering and sample selection attribute reduction of the intrusion detection[C]//Proceedings of Conference on Mathematical, Computational and Statistical Sciences and Engineering. Washington D.C., USA:IEEE Press, 2016:193-197. [5] CATENI S, COLLA V, VANNUCCI M. A method for resampling imbalanced datasets in binary classification tasks for real-world problems[J]. Neurocomputing, 2014, 135:32-47. [6] WANG S, YAO X. Multiclass imbalance problems:analysis and potential solutions[J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybernetics), 2012, 42(4):1119-1130. [7] 刘定祥,乔少杰,张永清,等.不平衡分类的数据采样方法综述[J].重庆理工大学学报(自然科学), 2019, 33(7):102-112. LIU D X, QIAO S J, ZHANG Y Q, et al. A survey on data sampling methods in imbalance classification[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(7):102-112.(in Chinese) [8] 李昂,韩萌,穆栋梁,等.多类不平衡数据分类方法综述[J].计算机应用研究, 2022, 39(12):3534-3545. LI A, HAN M, MU D L, et al. Survey of multi-class imbalanced data classification methods[J].Application Research of Computers, 2022, 39(12):3534-3545.(in Chinese) [9] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16:321-357. [10] HAN H, WANG W Y, MAO B H. Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning[C]//Proceedings of the 2005 International Conference on Intelligent Computing. Berlin, Germany:Springer, 2005:878-887. [11] HE H B,BAI Y, GARCIA E A, et al. ADASYN:adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of IEEE International Joint Conference on Neural Networks. Washington D. C., USA:IEEE Press, 2008:1322-1328. [12] DOUZAS G, BACAO F, LAST F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[J].Information Sciences, 2018, 465:1-20. [13] 姜新盈,王舒梵,严涛.基于层次密度聚类的去噪自适应混合采样[J].计算机系统应用, 2022, 31(10):206-210. JIANG X Y, WANG S F, YAN T. Denoising and adaptive hybrid sampling based on hierarchical density clustering[J]. Computer Systems and Applications, 2022, 31(10):206-210.(in Chinese) [14] 韩明鸣,郭虎升,王文剑.面向非平衡多分类问题的二次合成QSMOTE方法[J].南京大学学报(自然科学), 2019, 55(1):1-13. HAN M M, GUO H S, WANG W J. Quadratic synthetic minority over-sampling technique for classification of multiclass imbalance problems[J]. Journal of Nanjing University (Natural Science), 2019, 55(1):1-13.(in Chinese) [15] ZHU T F, LIN Y P, LIU Y H. Improving interpolation-based oversampling for imbalanced data learning[J]. Knowledge-Based Systems, 2020, 187:104826. [16] 刘文英,林亚林,李克文,等.一种软件缺陷不平衡数据分类新方法[J].山东科技大学学报(自然科学版), 2021, 40(2):84-94. LIU W Y, LI Y L, LI K W, et al.A novel unbalanced data classification method for software defects[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021,40(2):84-94.(in Chinese) [17] 李国和,刘顺欣,张予杰,等.面向分类模型学习的样本类别均衡化方法[J].计算机应用与软件, 2022, 39(10):230-237. LI G H, LIU S X, ZHANG Y J, et al. Synthetic method of label-balancing samples for classifier learning[J]. Computer Applications and Software, 2022, 39(10):230-237.(in Chinese) [18] 高子寒,宋燕.基于边界增强和去噪的自适应双权重过采样方法研究[J].智能计算机与应用, 2022, 12(1):58-64. GAO Z H, SONG Y. An adaptive double-weight enhanced boundary and denoising oversampling approach[J]. Intelligent Computer and Applications, 2022, 12(1):58-64.(in Chinese) [19] 贺作伟,陶佳晴,冷强奎,等.带有超长方体约束的少数类样本生成机制[J].计算机应用研究, 2022, 39(10):3055-3060. HE Z W, TAO J Q, LENG Q K, et al. Generation mechanism for minority samples with hypercuboid constraints[J]. Application Research of Computers, 2022, 39(10):3055-3060.(in Chinese) [20] 贺永森,陈江.抛物线插值法用于液压机工艺曲线的研究[J].锻压装备与制造技术, 2022, 57(4):68-71. HE Y S,CHEN J. Study on process curve of hydraulic press by use of parabolic interpolation[J].China Metalforming Equipment& Manufacturing Technology, 2022, 57(4):68-71.(in Chinese) [21] 马兰,井伟,扈月松,等.两点抛物线插值提高雷达测距精度的研究[J].火控雷达技术, 2020, 49(4):14-18, 26. MA L, JING W, HU Y S, et al. Research on improving radar ranging accuracy by two-point parabolic interpolation[J]. Fire Control Radar Technology, 2020, 49(4):14-18,26.(in Chinese) [22] 董明刚,姜振龙,敬超.基于海林格距离和SMOTE的多类不平衡学习算法[J].计算机科学, 2020, 47(1):102-109. DONG M G, JIANG Z L, JING C. Multi-class imbalanced learning algorithm based on Hellinger distance and SMOTE algorithm[J]. Computer Science, 2020, 47(1):102-109.(in Chinese) [23] 吴煜,杨爱萍,章宦记,等.基于黎曼与巴氏距离的脑磁图信号分类方法[J].计算机科学与探索, 2017, 11(5):776-784. WU Y, YANG A P, ZHANG H J, et al. MEG signals classification algorithm based on Riemann and Bhattacharyya distances[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(5):776-784.(in Chinese) [24] 李敏波,董伟伟.面向不平衡数据集的汽车零部件质量预测[J].中国机械工程, 2022, 33(1):88-96. LI M B, DONG W W. Quality prediction of automotive parts for imbalanced datasets[J]. China Mechanical Engineering, 2022, 33(1):88-96.(in Chinese) [25] LICHMAN M. UCI machine learning repository[EB/OL].[2023-11-02] . http://archive.ics.uci.edu/ml. |