[1] 齐鹏宇,王洪元,张继,等.基于改进FCOS的拥挤行人检测算法[J].智能系统学报, 2021, 16(4):811-818. QI P Y, WANG H Y, ZHANG J, et al. Crowded pedestrian detection algorithm based on improved FCOS[J]. Journal of Intelligent Systems, 2021, 16(4):811-818.(in Chinese) [2] 罗艳,张重阳,田永鸿,等.深度学习行人检测方法综述[J].中国图象图形学报, 2022, 27(7):2094-2111. LUO Y, ZHANG C Y, TIAN Y H, et al. An overview of deep learning based pedestrian detection algorithms[J]. Journal of Image and Graphics, 2022, 27(7):2094-2111.(in Chinese) [3] 陈宁,李梦璐,袁皓,等.遮挡情形下的行人检测方法综述[J].计算机工程与应用, 2020, 56(16):13-20. CHEN N, LI M L, YUAN H, et al. Review of pedestrian detection with occlusion[J]. Journal of Computer Engineering and Applications, 2020, 56(16):13-20.(in Chinese) [4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2005:886-893. [5] 田仙仙,鲍泓,徐成.一种改进HOG特征的行人检测算法[J].计算机科学, 2014, 41(9):320-324. TIAN X X, BAO H, XU C. Improved HOG algorithm of pedestrian detection[J]. Computer Science, 2014, 41(9):320-324.(in Chinese) [6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks.[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [7] DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters:learning continuous convolution operators for visual tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany:Springer, 2016:472-488. [8] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2017:2961-2969. [9] 郑华伟,王飞,高建邦. DES-YOLO:一种更精确的目标检测方法[J].光电工程, 2024, 51(11):240212. ZHENG H W, WANG F, GAO J B. DES-YOLO:a more accurate object detection method[J].Opto-Electronic Engineering, 2024, 51(11):240212.(in Chinese) [10] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:2081-2086. [11] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[EB/OL].[2023-11-08] . https://link.springer.com/content/pdf/10.1007/978-3-319-46448-0_2.pdf. [12] 邓杰,万旺根.基于改进YOLOv3的密集行人检测[J].电子测量技术, 2021, 44(11):99-95. DENG J, WANG W G. Dense pedestrian detection based on improved YOLOv3[J]. Electronic Measurement Technology, 2021, 44(11):99-95.(in Chinese) [13] TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO:from YOLOv1 to YOLOv8 and beyond[EB/OL].[2023-11-08] .https://arXiv preprint arXiv:2304.00501, 2023. [14] JOCHER G, CHAURASIA A, QIU J. YOLO by ultralytics[EB/OL].[2023-11-08] .https://github.com/ultralytics/ultralytics. [15] 娄翔飞,吕文涛,叶冬,等.基于计算机视觉的行人检测方法研究进展[J].浙江理工大学学报(自然科学), 2023, 49(3):318-330. LOU X F, LU W T, YE D, et al. Research progress on pedestrian detection methods based on computer vision[J]. Journal of Zhejiang Sci-Tech University (Natural Science), 2023, 49(3):318-330.(in Chinese) [16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2016:779-788. [17] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2023-11-08] . https://arxiv.org/pdf/1804.02767. [18] JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5:v3.1-bug fixes and performance improvements[EB/OL].[2023-11-08] .https://www.semanticscholar.org/paper/ultralytics-yolov5% 3A-v3.1-Bug-Fixes-and-Performance-Jocher-Stoken/c12d7dcd6d13f0187dc7922b4ce97d31e4d00f60. [19] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:7464-7475. [20] SUNKARA R, LUO T. No more strided convolutions or pooling:a new CNN building block for low-resolution images and small objects[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Germany:Springer, 2022:443-459. [21] WANG J Q, CHEN K, XU R, et al. CARAFE:content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2019:3007-3016. [22] SHAO S, ZHAO Z J, LI B X, et al. CrowdHuman:a benchmark for detecting human in a crowd[EB/OL].[2023-11-08] . https://arxiv.org/pdf/1805.00123. [23] ZHANG S, XIE Y, WAN J, et al. WiderPerson:a diverse dataset for dense pedestrian detection in the wild[J].IEEE Transactions on Multimedia, 2020, 22(2):380-393. [24] YANG G, LEI J, ZHU Z, et al. AFPN:asymptotic feature pyramid network for object detection[C]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA:IEEE Press, 2023:2184-2189. [25] LI J, WEN Y, HE L. SCConv:spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:6153-6162. [26] ZHU X Z, HU H, LIN S, et al. Deformable ConvNetsV2:more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2019:9308-9316. [27] HUANG H, ZHOU X, CAO J, et al. Vision Transformer with super token sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:22690-22699. [28] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2019:1314-1324. [29] MEHTA S, RASTEGARI M. MobileViT:light-weight, general-purpose, and mobile-friendly vision Transformer[EB/OL].[2023-11-08] . https://arxiv.org/abs/2110.02178?context=cs. [30] ZHOU D Q, HOU Q B, CHEN Y P, et al. Rethinking bottleneck structure for efficient mobile network design[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany:Springer, 2020:680-697. [31] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2017:764-773. [32] ZHANG X, SONG Y, SONG T, et al. AKConv:convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[EB/OL].[2023-11-08] . http://arXiv preprint arXiv:2311.11587. |