1 |
TOROYAN T . Global status report on road safety. Injury Prevention, 2009, 15 (4): 286.
doi: 10.1136/ip.2009.023697
|
2 |
HUVAL B, WANG T, TANDON S, et al. An empirical evaluation of deep learning on high-way driving[EB/OL]. (2015-04-17)[2023-10-24]. https://arxiv.org/abs/1504.01716.
|
3 |
|
4 |
STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: transformer for semantic segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2022: 7242-7252.
|
5 |
刘文波, 叶涛, 李颀. 基于改进SOLO v2的番茄叶部病害检测方法. 农业机械学报, 2021, 52 (8): 213- 220.
|
|
LIU W B , YE T , LI Q . Tomato leaf disease detection method based on improved SOLO v2. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (8): 213- 220.
|
6 |
穆世义, 徐树公. 基于单字符注意力的全品类鲁棒车牌识别. 自动化学报, 2023, 49 (1): 122- 134.
|
|
MU S Y , XU S G . Full-category robust license plate recognition based on character attention. Acta Automatica Sinica, 2023, 49 (1): 122- 134.
|
7 |
彭道刚, 陈晨, 王丹豪, 等. 基于改进YOLOv7的火电厂管道及阀门泄漏分割与检测. 控制与决策, 2024, 39 (9): 2977- 2986.
|
|
PENG D G , CHEN C , WANG D H , et al. Leakage segmentation and detection of pipelines and valves in thermal power plants based on improved YOLOv7. Control and Decision, 2024, 39 (9): 2977- 2986.
|
8 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2980-2988.
|
9 |
|
10 |
WANG X L, KONG T, SHEN C H, et al. SOLO: segmenting objects by locations[C]//Proceedings of ECCV'20. Berlin, Germany: Springer, 2020: 649-665.
|
11 |
WANG X , ZHANG R , SHEN C , et al. SOLO: a simple framework for instance segmentation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2022, 44 (11): 8587- 8601.
URL
|
12 |
CHEN X L, GIRSHICK R, HE K M, et al. TensorMask: a foundation for dense object segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2020: 2061-2069.
|
13 |
HURTIK P , MOLEK V , HULA J , et al. Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3. Neural Computing and Applications, 2022, 34 (10): 8275- 8290.
doi: 10.1007/s00521-021-05978-9
|
14 |
|
15 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 779-788.
|
16 |
李成严, 车子轩, 郑企森. 基于特征与数据增强的城市街景实例分割算法. 哈尔滨理工大学学报, 2024, 29 (2): 25- 32.
|
|
LI C Y , CHE Z X , ZHENG Q S . Instance segmentation algorithm of urban street scene based on data augmentation and feature enhancement. Journal of Harbin University of Science and Technology, 2024, 29 (2): 25- 32.
|
17 |
宋亮, 谷玉海, 黄佳伟. 改进SOLOv2的非结构化道路图像实例分割. 激光杂志, 2024, 45 (3): 133- 139.
|
|
SONG L , GU Y H , HUANG J W . Improved segmentation of unstructured road image instance in SOLOv2. Laser Journal, 2024, 45 (3): 133- 139.
|
18 |
陈妍妍, 王海, 蔡英凤, 等. 基于检测的高效自动驾驶实例分割方法. 汽车工程, 2023, 45 (4): 541- 550.
|
|
CHEN Y Y , WANG H , CAI Y F , et al. Efficient automatic driving instance segmentation method based on detection. Automotive Engineering, 2023, 45 (4): 541- 550.
|
19 |
ZHU X, HU H, LIN S, et al. Deformable ConvNets v2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 9308-9316.
|
20 |
OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2023: 1-5.
|
21 |
ZHENG Z , WANG P , REN D , et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 2021, 52 (8): 8574- 8586.
URL
|
22 |
TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-01-24)[2023-10-24]. https://arxiv.org/abs/2301.10051.
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
MAO M , ZHANG R , ZHENG H , et al. Dual-stream network for visual recognition. Advances in Neural Information Processing Systems, 2021, 34, 25346- 25358.
|
28 |
LI X , WANG W , WU L , et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. Advances in Neural Information Processing Systems, 2020, 33, 21002- 21012.
|
29 |
RUBY U , YENDAPALLI V . Binary cross entropy with deep learning technique for image classification. International Journal of Advanced Trends in Computer Science and Engineering, 2020, 9 (4): 5393- 5397.
URL
|
30 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 658-666.
|
31 |
HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
URL
|
32 |
WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7794-7803.
|
33 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of Lecture Notes in Computer Science(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Berlin, Germany: Springer, 2018: 3-19.
|
34 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 11534-11542.
|