1 |
ZHENG X T, WANG B Q, DU X Q, et al. Mutual attention inception network for remote sensing visual question answering. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 5606514.
doi: 10.1109/TGRS.2021.3079918
|
2 |
霍光, 林大为, 刘元宁, 等. 基于轻量级卷积神经网络的小样本虹膜图像分割. 吉林大学学报(理学版), 2023, 61 (3): 583- 591.
URL
|
|
HUO G, LIN D W, LIU Y N, et al. Small-sample iris image segmentation based on lightweight convolutional neural networks. Journal of Jilin University (Science Edition), 2023, 61 (3): 583- 591.
URL
|
3 |
BONANNELLA C, CHIRICI G, TRAVAGLINI D, et al. Characterization of wildfires and harvesting forest disturbances and recovery using Landsat time series: a case study in mediterranean forests in central Italy. Fire, 2022, 5 (3): 68.
doi: 10.3390/fire5030068
|
4 |
WU D, SONG H B, FAN C Z. Object tracking in satellite videos based on improved kernel correlation filter assisted by road information. Remote Sensing, 2022, 14 (17): 4215.
doi: 10.3390/rs14174215
|
5 |
崔丽群, 曹华维. 基于改进YOLOv5的遥感图像目标检测. 计算机工程, 2024, 50 (4): 228- 236.
URL
|
|
CUI L Q, CAO H W. Target detection of remote-sensing images based on improved YOLOv5. Computer Engineering, 2024, 50 (4): 228- 236.
URL
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 779-788.
|
7 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[M]. Berlin, Germany: Springer International Publishing, 2016: 21-37.
|
8 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 213-229.
|
9 |
GUO G M, FANG L Y, YUE J. Oriented spatial correlative aligned feature for remote sensing object detection[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Washington D. C., USA: IEEE Press, 2021: 5319-5322.
|
10 |
MA W P, LI N, ZHU H, et al. Feature split-merge-enhancement network for remote sensing object detection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 5616217.
|
11 |
GONG H, MU T K, LI Q X, et al. Swin-Transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images. Remote Sensing, 2022, 14 (12): 2861.
doi: 10.3390/rs14122861
|
12 |
LIU K, HUANG J, LI X L. Eagle-eye-inspired attention for object detection in remote sensing. Remote Sensing, 2022, 14 (7): 1743.
doi: 10.3390/rs14071743
|
13 |
LI P, CHE C. SeMo-YOLO: a multiscale object detection network in satellite remote sensing images[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D. C., USA: IEEE Press, 2021: 1-8.
|
14 |
LIU Z G, GAO Y, DU Q Q, et al. YOLO-extract: improved YOLOv5 for aircraft object detection in remote sensing images. IEEE Access, 2023, 11, 1742- 1751.
doi: 10.1109/ACCESS.2023.3233964
|
15 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
16 |
|
17 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
18 |
LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[EB/OL]. [2023-09-18]. http://arxiv.org/abs/2006.04388.
|
19 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 12993-13000.
|
20 |
WANG P J, BAYRAM B, SERTEL E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth Science Reviews, 2022, 232, 104110.
doi: 10.1016/j.earscirev.2022.104110
|
21 |
RAZZAK M T, MATEO-GARCÍA G, LECUYER G, et al. Multi-spectral multi-image super-resolution of Sentinel-2 with radiometric consistency losses and its effect on building delineation. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195, 1- 13.
doi: 10.1016/j.isprsjprs.2022.10.019
|
22 |
端木春江, 左德遥. 锚点领域回归与稀疏表示的图像超分辨率方法. 计算机工程, 2019, 45 (5): 194- 198.
URL
|
|
DUANMU C J, ZUO D Y. Image super-resolution method via anchored neighborhood regression and sparse representation. Computer Engineering, 2019, 45 (5): 194- 198.
URL
|
23 |
|
24 |
祝冰艳, 陈志华, 盛斌. 基于感知增强Swin Transformer的遥感图像检测. 计算机工程, 2024, 50 (1): 216- 223.
URL
|
|
ZHU B Y, CHEN Z H, SHENG B. Remote sensing image detection based on perceptually enhanced Swin Transformer. Computer Engineering, 2024, 50 (1): 216- 223.
URL
|
25 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 1577-1586.
|
26 |
HOWARD A G, ZHU M L, CHEN B. MobileNets: effificient convolutional neural networks for mobile vision applications [EB/OL]. [2023-09-18]. https://arxiv.org/abs/1704.04861.
|
27 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6848-6856.
|
28 |
HAN Q, FAN Z J, DAI Q, et al. On the connection between local attention and dynamic depth-wise convolution[EB/OL]. [2023-09-18]. http://arxiv.org/abs/2106.04263.
|
29 |
ZHOU Y P, LI Z, GUO C L, et al. SRFormerV2: taking a closer look at permuted self-attention for image super-resolution[EB/OL]. [2023-09-18]. http://arxiv.org/abs/2303.09735.
|
30 |
XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3974-3983.
|
31 |
CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (12): 7405- 7415.
doi: 10.1109/TGRS.2016.2601622
|
32 |
LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159, 296- 307.
doi: 10.1016/j.isprsjprs.2019.11.023
|