1 |
LALOU M , TAHRAOUI M A , KHEDDOUCI H . The critical node detection problem in networks: a survey. Computer Science Review, 2018, 28, 92- 117.
doi: 10.1016/j.cosrev.2018.02.002
|
2 |
谢丽霞, 孙红红, 杨宏宇, 等. 基于K-shell的复杂网络关键节点识别方法. 清华大学学报(自然科学版), 2022, 62 (5): 849- 861.
doi: 10.16511/j.cnki.qhdxxb.2022.25.041
|
|
XIE L X , SUN H H , YANG H Y , et al. Key node recognition in complex networks based on the K-shell method. Journal of Tsinghua University(Science and Technology), 2022, 62 (5): 849- 861.
doi: 10.16511/j.cnki.qhdxxb.2022.25.041
|
3 |
熊才权, 古小惠, 吴歆韵. 基于K-shell位置和两阶邻居的复杂网络节点重要性评估方法. 计算机应用研究, 2023, 40 (3): 738- 742.
doi: 10.19734/j.issn.1001-3695.2022.08.0402
|
|
XIONG C Q , GU X H , WU X Y . Evaluation method of node importance in complex networks based on K-shell position and neighborhood within two steps. Application Research of Computers, 2023, 40 (3): 738- 742.
doi: 10.19734/j.issn.1001-3695.2022.08.0402
|
4 |
MUKHTAR M F , ABAL ABAS Z , BAHARUDDIN A S , et al. Integrating local and global information to identify influential nodes in complex networks. Scientific Reports, 2023, 13, 11411.
doi: 10.1038/s41598-023-37570-7
|
5 |
吴亚丽, 任远光, 董昂, 等. 基于邻域K-shell分布的关键节点识别方法. 计算机工程与应用, 2024, 60 (2): 87- 95.
doi: 10.3778/j.issn.1002-8331.2305-0181
|
|
WU Y L , REN Y G , DONG A , et al. Key nodes identification method based on neighborhood K-shell distribution. Computer Engineering and Application, 2024, 60 (2): 87- 95.
doi: 10.3778/j.issn.1002-8331.2305-0181
|
6 |
张大勇, 门浩, 苏展. 一种基于改进K核分解的合作网络关键节点集识别方法. 数据分析与知识发现, 2024, 8 (5): 80- 90.
URL
|
|
ZHANG D Y , MEN H , SU Z . Identifying method of critical node sets in collaboration networks based on the improved K-shell decomposition. Data Analysis and Knowledge Discovery, 2024, 8 (5): 80- 90.
URL
|
7 |
汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法. 物理学报, 2023, 72 (4): 331- 341.
doi: 10.7498/aps.72.20221878
|
|
WANG T T , LIANG Z W , ZHANG R X . Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, 2023, 72 (4): 331- 341.
doi: 10.7498/aps.72.20221878
|
8 |
ZHAO N , WANG H , WEN J J , et al. Identifying critical nodes in complex networks based on neighborhood information. New Journal of Physics, 2023, 25 (8): 083020.
doi: 10.1088/1367-2630/ace843
|
9 |
ARULSELVAN A , COMMANDER C W , ELEFTERIADOU L , et al. Detecting critical nodes in sparse graphs. Computers[WT《Times New Roman》]& Operations Research, 2009, 36 (7): 2193- 2200.
doi: 10.1016/j.cor.2008.08.016
|
10 |
VEREMYEV A , BOGINSKI V , PASILIAO E L . Exact identification of critical nodes in sparse networks via new compact formulations. Optimization Letters, 2014, 8 (4): 1245- 1259.
doi: 10.1007/s11590-013-0666-x
|
11 |
程适, 王雪萍, 刘悦, 等. 面向非线性方程组的学习型头脑风暴优化算法. 计算机工程, 2023, 49 (7): 47- 54.
doi: 10.19678/j.issn.1000-3428.0066642
|
|
CHENG S , WANG X P , LIU Y , et al. Learning-based brain storm optimization algorithm for nonlinear equation system. Computer Engineering, 2023, 49 (7): 47- 54.
doi: 10.19678/j.issn.1000-3428.0066642
|
12 |
KÉPES T Z . The critical node detection problem in hypergraphs using weighted node degree centrality. PeerJ Computer Science, 2023, 9, e1351.
doi: 10.7717/peerj-cs.1351
|
13 |
周春良, 刘仰光, 孟祥佩. 基于贝叶斯衍生分类器的社交网络用户影响力评价模型. 计算机工程, 2024, 50 (6): 394- 400.
doi: 10.19678/j.issn.1000-3428.0066957
|
|
ZHOU C L , LIU Y G , MENG X P . Social network user influence evaluation model based on Bayesian derived classifier. Computer Engineering, 2024, 50 (6): 394- 400.
doi: 10.19678/j.issn.1000-3428.0066957
|
14 |
许钦钧, 徐龙琴, 刘双印, 等. 基于飞蛾扑火算法的关键节点挖掘方法. 计算机应用研究, 2023, 40 (9): 2713-2719, 2728.
URL
|
|
XU Q J , XU L Q , LIU S Y , et al. Enhanced moth-flame optimization algorithm for critical node detection. Application Research of Computers, 2023, 40 (9): 2713-2719, 2728.
URL
|
15 |
韩美慧, 王鹏, 李瑞旭, 等. 一种基于协同演化的自适应约束多目标进化算法. 计算机工程, 2024, 50 (6): 124- 137.
doi: 10.19678/j.issn.1000-3428.0067986
|
|
HAN M H , WANG P , LI R X , et al. An adaptive constrained multi-objective co-evolutionary algorithm. Computer Engineering, 2024, 50 (6): 124- 137.
doi: 10.19678/j.issn.1000-3428.0067986
|
16 |
YU S Q , LI J X , FANG X , et al. GA-based multipopulation synergistic gene screening strategy on critical nodes detection. IEEE Transactions on Computational Social Systems, 2024, 11 (3): 3839- 3850.
doi: 10.1109/TCSS.2023.3325263
|
17 |
BERNASCHI M , CELESTINI A , CIANFRIGLIA M , et al. Seeking critical nodes in digraphs. Journal of Computational Science, 2023, 69, 102012.
doi: 10.1016/j.jocs.2023.102012
|
18 |
VENTRESCA M . Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Computers[WT《Times New Roman》]& Operations Research, 2012, 39 (11): 2763- 2775.
doi: 10.1016/j.cor.2012.02.008
|
19 |
NEWMAN M E . Finding community structure in networks using the eigenvectors of matrices. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74 (3): 036104.
doi: 10.1103/PhysRevE.74.036104
|
20 |
COLLINS S R , KEMMEREN P , ZHAO X C , et al. Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. Molecular[WT《Times New Roman》]& Cellular Proteomics, 2007, 6 (3): 439- 450.
|
21 |
SPRING N , MAHAJAN R , WETHERALL D , et al. Measuring ISP topologies with rocketfuel. ACM Transactions on Networking, 2004, 12 (1): 2- 16.
doi: 10.1109/TNET.2003.822655
|
22 |
|
23 |
LESKOVEC J , KLEINBERG J , FALOUTSOS C . Graph evolution. ACM Transactions on Knowledge Discovery from Data, 2007, 1 (1): 2.
doi: 10.1145/1217299.1217301
|
24 |
SINGH R , XU J B , BERGER B . Global alignment of multiple protein interaction networks with application to functional orthology detection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (35): 12763- 12768.
doi: 10.1073/pnas.0806627105
|
25 |
DOLAN E D , MORÉ J J . Benchmarking optimization software with performance profiles. Mathematical Programming, 2002, 91 (2): 201- 213.
doi: 10.1007/s101070100263
|
26 |
|