[1] AGRAWAL R, GEHRKE J, GUNOPULOS D, et al.Automatic subspace clustering of high dimensional data[J].Data Mining and Knowledge Discovery, 2005, 11(1):5-33. [2] LU L, VIDAL R.Combined central and subspace clustering for computer vision applications[C]//Proceedings of the 23rd International Conference on Machine Learning.New York, USA:ACM Press, 2006:593-600. [3] HONG W, WRIGHT J, HUANG K, et al.Multiscale hybrid linear models for lossy image representation[J].IEEE Transactions on Image Processing, 2006, 15(12):3655-3671. [4] YANG A Y, WRIGHT J, MA Y, et al.Unsupervised segmentation of natural images via lossy data compression[J].Computer Vision and Image Understanding, 2008, 110(2):212-225. [5] 刘宇廷, 毕海滨, 郭强, 等.基于网络拓扑与节点元数据的社团检测算法[J].计算机工程, 2018, 44(11):178-183. LIU Y T, BI H B, GUO Q, et al.Community detection algorithm based on network topology and node metadata[J].Computer Engineering, 2018, 44(11):178-183.(in Chinese) [6] 彭焱, 溪利亚.局部优先的动态网络重叠社团及其演变模式检测[J].计算机工程, 2016, 42(12):188-195, 203. PENG Y, XI L Y.Local-first detection of overlapping community and its evolution pattern in dynamic networks[J].Computer Engineering, 2016, 42(12):188-195, 203.(in Chinese) [7] 蒋盛益, 吴美玲, 杨博泓.基于网络社团检测的电信客户细分[J].计算机工程, 2014, 40(7):312-316. JIANG S Y, WU M L, YANG B H.Telecom customer segmentation based on network community detection[J].Computer Engineering, 2014, 40(7):312-316.(in Chinese) [8] 尹欣红, 赵世燕, 陈晓云.带偏置的信号传播的随机游走的社团检测算法[J].计算机科学, 2019, 46(12):45-55. YIN X H, ZHAO S Y, CHEN X Y.Random walk community detection algorithm with biased signal propagation[J].Computer Science, 2019, 46(12):45-55.(in Chinese) [9] DOMENICO M, SOLÉ-RIBALTA A, COZZO E, et al.Mathematical formulation of multi-layer networks[J].Physical Review X, 2014, 3(4):4192-4195. [10] 贾郑磊, 谷林, 高智勇, 等.基于节点相似性的加权复杂网络BGLL社团检测方法[J].计算机系统应用, 2019, 28(2):201-206. JIA Z L, GU L, GAO Z Y, et al.Weighted complex network BGLL community detection method based on node similarity[J].Computer System Applications, 2019, 28(2):201-206.(in Chinese) [11] 刘迪洋, 张震, 张进.基于社区结构的复杂网络鲁棒性优化策略[J].计算机工程, 2021, 47(8):84-92. LIU D Y, ZHANG Z, ZHANG J.Robust optimization strategy for complex networks based on community structure[J].Computer Engineering, 2021, 47(8):84-92.(in Chinese) [12] ELHAMIFAR E, VIDAL R.Sparse subspace clustering:algorithm, theory, and applications[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(11):2765-2781. [13] LIU G, LIN Z, YU Y.Robust subspace segmentation by low-rank representation[C]//Proceedings of International Conference on Machine Learning.New York, USA:ACM Press, 2010:663-670. [14] FANG X Z, HAN N, WU J G, et al.Approximate low-rank projection learning for feature extraction[J].IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11):5228-5241. [15] WANG Q, HE X, LI X D.Locality and structure regularized low rank representation for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2):911-923. [16] 陶洋, 鲍灵浪, 胡昊.结构约束的对称低秩表示子空间聚类方法[J].计算机工程, 2021, 47(4):56-61, 67. TAO Y, BAO L L, HU H.Structure-constrained symmetric low-rank representation subspace clustering method[J].Computer Engineering, 2021, 47(4):56-61, 67.(in Chinese) [17] BOYD S, PARIKH N, CHU E, et al.Distributed optimization and statistical learning via the alternating direction method of multipliers[J].Foundations and Trends in Machine Learning, 2011, 3(1):1-122. [18] ZHANG S, ZHAO H, NG M K.Functional module analysis for Gene coexpression networks with network integration[J].IEEE/ACM Transactions on Computational Biology & Bioinformatics, 2015, 12(5):1146-1160. [19] YAN S, WANG H.Semi-supervised learning by sparse representation[C]//Proceedings of 2009 SIAM International Conference on Data Mining.[S.l.]:DBLP, 2009:1-5. [20] GUO X.Robust subspace segmentation by simultaneously learning data representations and their affinity matrix[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2015:1-5. [21] XU Y, YIN W.A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion[J].SIAM Journal on Imaging Sciences, 2015, 6(3):1758-1789. [22] MAHMOOD A, SMALL M.Subspace based network community detection using sparse linear coding[J].IEEE Transactions on Knowledge & Data Engineering, 2016, 28(3):801-812. [23] SHI J B, MALIK J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2000, 22(8):888-905. [24] GLIGORIJEVIĆ V, PANAGAKIS Y, ZAFEIRIOU S.Non-negative matrix factorizations for multiplex network analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(4):928-940. [25] TANG W, LU Z, DHILLON I S.Clustering with multiple graphs[C]//Proceedings of 2009 IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2009:1016-1021. [26] WANG B, MEZLINI A M, DEMIR F, et al.Similarity network fusion for aggregating data types on a genomic scale[J].Nature Methods, 2014, 11(3):333. [27] DONG X, FROSSARD P, VANDERGHEYNST P, et al.Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds[J].IEEE Transactions on Signal Processing, 2013, 62(4):905-918. [28] ZHAO Y, KARYPIS G.Empirical and theoretical comparisons of selected criterion functions for document clustering[J].Machine Learning, 2004, 55(3):311-331. [29] MANNING C D, RAGHAVAN P, SCHÜTZE H.Text classification and naive Bayes[J].Introduction to Information Retrieval, 2008, 1(6):1-5. [30] LIU H, WU Z, LI X, et al.Constrained nonnegative matrix factorization for image representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(7):1299-1311. |