1 |
XIANG X , ZHANG Y , EL SADDIK A . Pavement crack detection network based on pyramid structure and attention mechanism. IET Image Processing, 2020, 14 (8): 1580- 1586.
doi: 10.1049/iet-ipr.2019.0973
|
2 |
KANG D H , CHA Y J . Efficient attention-based deep encoder and decoder for automatic crack segmentation. Structural Health Monitoring, 2022, 21 (5): 2190- 2205.
doi: 10.1177/14759217211053776
|
3 |
陈浩瀚, 谢仁平, 魏文红. 基于区域生长和梯度阈值分割的路面裂缝提取算法. 东莞理工学院学报, 2022, 29 (3): 64- 68.
|
|
CHEN H H , XIE R P , WEI W H . Crack extraction algorithm for road image based on region growing algorithm and gradient segmentation threshold. Journal of Dongguan University of Technology, 2022, 29 (3): 64- 68.
|
4 |
YANG C, GENG M. The crack detection algorithm of pavement image based on edge information[C]//Proceedings of 6th International Conference on Computer-Aided Design, Manufacturing, Modeling and Simulation. USA, New York: AIP Publishing, 2018: 040023.
|
5 |
李鹏, 李强, 马味敏, 等. 基于K-means聚类的路面裂缝分割算法. 计算机工程与设计, 2020, 41 (11): 3143- 3147.
|
|
LI P , LI Q , MA W M , et al. Pavement crack segmentation based on K-means clustering. Computer Engineering and Design, 2020, 41 (11): 3143- 3147.
|
6 |
陶健, 田霖, 张德津, 等. 基于局部纹理特征的沥青路面裂缝检测方法. 计算机工程与设计, 2022, 43 (2): 517- 524.
|
|
TAO J , TIAN L , ZHANG D J , et al. Asphalt pavement crack detection method based on local texture features. Computer Engineering and Design, 2022, 43 (2): 517- 524.
|
7 |
郝巨鸣, 杨景玉, 韩淑梅, 等. 引入Ghost模块和ECA的YOLOv4公路路面裂缝检测方法. 计算机应用, 2023, 43 (4): 1284- 1290.
|
|
HAO J M , YANG J Y , HAN S M , et al. YOLOv4 highway pavement crack detection method using Ghost module and ECA. Journal of Computer Applications, 2023, 43 (4): 1284- 1290.
|
8 |
付强, 卜凡民, 任洪鹏, 等. 基于深度学习方法的路面裂缝目标检测. 公路, 2023, 68 (9): 395- 405.
|
|
FU Q , PU F M , REN H P , et al. Pavement crack target detection based on deep learning method. Highway, 2023, 68 (9): 395- 405.
|
9 |
孙朝云, 马志丹, 李伟, 等. 基于深度卷积神经网络融合模型的路面裂缝识别方法. 长安大学学报(自然科学版), 2020, 40 (4): 1- 13.
|
|
SUN Z Y , MA Z D , LI W , et al. Pavement crack identification method based on deep convolutional neural network fusion model. Journal of Chang'an University (Natural Science Edition), 2020, 40 (4): 1- 13.
|
10 |
翁飘, 陆彦辉, 齐宪标, 等. 基于改进的全卷积神经网络的路面裂缝分割技术. 计算机工程与应用, 2019, 55 (16): 235-239, 245.
doi: 10.3778/j.issn.1002-8331.1901-0068
|
|
WONG P , LU Y H , QI X B , et al. Pavement crack segmentation technology based on improved fully convolutional networks. Computer Engineering and Applications, 2019, 55 (16): 235-239, 245.
doi: 10.3778/j.issn.1002-8331.1901-0068
|
11 |
杨秋媛, 李宁, 石林, 等. 基于空洞卷积与动态多核融合池化的裂缝检测. 计算机工程与设计, 2022, 43 (12): 3529- 3537.
|
|
YANG Q Y , LI N , SHI L , et al. Crack detection based on dilated convolution and dynamic multi-kernel fusion pooling module. Computer Engineering and Design, 2022, 43 (12): 3529- 3537.
|
12 |
于海洋, 景鹏, 张文涛, 等. 基于残差与注意力机制的道路裂缝检测U-Net改进模型. 计算机工程, 2023, 49 (6): 265- 273.
doi: 10.19678/j.issn.1000-3428.0064952
|
|
YU H Y , JING P , ZHANG W T , et al. Improved U-Net model for road crack detection based on residual and attention mechanism. Computer Engineering, 2023, 49 (6): 265- 273.
doi: 10.19678/j.issn.1000-3428.0064952
|
13 |
张伯树, 张志华, 张洋. 改进的HRNet应用于路面裂缝分割与检测. 测绘通报, 2022 (3): 83- 89.
|
|
ZHANG B S , ZHANG Z H , ZHANG Y . Improved HRNet applied to segmentation and detection of pavement crack. Bulletin of Surveying and Mapping, 2022 (3): 83- 89.
|
14 |
李良福, 王楠, 武彪, 等. 基于改进PSPNet的桥梁裂缝图像分割算法. 激光与光电子学进展, 2021, 58 (22): 2210001.
|
|
LI L F , WANG N , WU B , et al. Segmentation algorithm of bridge crack image based on modified PSPNet. Laser and Optoelectronics Progress, 2021, 58 (22): 2210001.
|
15 |
FU H , MENG D , LI W , et al. Bridge crack semantic segmentation based on improved Deeplabv3+. Journal of Marine Science and Engineering, 2021, 9 (6): 671.
doi: 10.3390/jmse9060671
|
16 |
陈宇平, 范高. 基于改进DeepLabV3+在复杂环境下的道路裂缝检测. 广州大学学报(自然科学版), 2023, 22 (2): 43- 51.
doi: 10.3969/j.issn.1671-4229.2023.02.006
|
|
CHEN Y P , FAN G . Road crack detection based on improved DeepLabV3+ in complex environments. Journal of Guangzhou University (Natural Science Edition), 2023, 22 (2): 43- 51.
doi: 10.3969/j.issn.1671-4229.2023.02.006
|
17 |
黄荣霞, 刘德儿. 最大连通域协同的改进Deeplabv3+路面裂缝检测. 计算机仿真, 2023, 40 (5): 182- 186.
doi: 10.3969/j.issn.1006-9348.2023.05.032
|
|
HUANG R X , LIU D E . Improved Deeplabv3+ pavement crack detection based on maximum connection region collaboration. Computer Simulation, 2023, 40 (5): 182- 186.
doi: 10.3969/j.issn.1006-9348.2023.05.032
|
18 |
LIU R, HE D. Semantic segmentation based on Deeplabv3+ and attention mechanism[C]//Proceedings of 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference. Washington D. C., USA: IEEE Press, 2021: 255-259.
|
19 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottle-necks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
20 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2023-11-27]. https://arxiv.org/abs/1704.04861.
|
21 |
李强龙, 周新文, 位梦恩, 等. 基于条形池化和注意力机制的街道场景红外目标检测算法. 计算机工程, 2023, 49 (8): 310- 320.
doi: 10.19678/j.issn.1000-3428.0065481
|
|
LI Q L , ZHOU X W , WEI M E , et al. Infrared target detection algorithm based on strip pooling and attention mechanism in street scenes. Computer Engineering, 2023, 49 (8): 310- 320.
doi: 10.19678/j.issn.1000-3428.0065481
|
22 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
23 |
SHI Y , CUI L , QI Z , et al. Automatic road crack detection using random structured forests. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (12): 3434- 3445.
doi: 10.1109/TITS.2016.2552248
|
24 |
YANG F , ZHANG L , YU S , et al. Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (4): 1525- 1535.
doi: 10.1109/TITS.2019.2910595
|
25 |
ZOU Q , CAO Y , LI Q , et al. CrackTree: automatic crack detection from pavement images. Pattern Recognition Letters, 2012, 33 (3): 227- 238.
doi: 10.1016/j.patrec.2011.11.004
|
26 |
LIU Y , YAO J , LU X , et al. DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing, 2019, 338, 139- 153.
doi: 10.1016/j.neucom.2019.01.036
|