1 |
TAO T , DONG D C , HUANG S Z , et al. Object detection-based license plate localization and recognition in complex environments. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674 (12): 212- 223.
doi: 10.1177/0361198120954202
|
2 |
胡宏宇, 左记祥, 吕颖, 等. 面向自动驾驶的遥感影像路网检测方法. 中国公路学报, 2022, 35 (11): 310- 317.
doi: 10.19721/j.cnki.1001-7372.2022.11.026
|
|
HU H Y , ZUO J X , LYU Y , et al. Road network detection of remote sensing images for autonomous driving. China Journal of Highway and Transport, 2022, 35 (11): 310- 317.
doi: 10.19721/j.cnki.1001-7372.2022.11.026
|
3 |
王辉, 吴雨杰, 范自柱, 等. 基于深度学习的铁路限界快速检测算法. 铁道科学与工程学报, 2023, 20 (4): 1223- 1231.
|
|
WANG H , WU Y J , FAN Z Z , et al. Fast detection algorithm of railway clearance based on deep learning. Journal of Railway Science and Engineering, 2023, 20 (4): 1223- 1231.
|
4 |
HUANG S Z , YANG L Y , ZHANG F , et al. Turnout fault diagnosis based on CNNs with self-generated samples. Journal of Transportation Engineering, Part A: Systems, 2020, 146 (9): 1- 12.
doi: 10.1061/JTEPBS.0000432
|
5 |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]//Proceedings of the 2nd International Conference on Learning Representations. Banff, Canada: [s. n. ], 2014: 1-10.
|
6 |
EYKHOLT K, EVTIMOV I, FERNANDES E, et al. Robust physical-world attacks on deep learning visual classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2018: 1625-1634.
|
7 |
HUANG S Z , LIU X W , YANG X L , et al. An improved ShapeShifter method of generating adversarial examples for physical attacks on stop signs against Faster R-CNNs. Computers & Security, 2021, 104, 102120.
doi: 10.1016/j.cose.2020.102120
|
8 |
SHARIF M, BHAGAVATULA S, BAUER L, et al. Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2016: 1528-1540.
|
9 |
GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//Proceedings of the 3rd International Conference on Learning Representations. San Juan, USA: [s. n. ], 2015: 1-11.
|
10 |
MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 2574-2582.
|
11 |
DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2018: 9185-9193.
|
12 |
WEI X X, LIANG S Y, CHEN N, et al. Transferable adversarial attacks for image and video object detection[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: International Joint Conferences on Artificial Intelligence Organization, 2019: 954-960.
|
13 |
WANG D R , LI C R , WEN S , et al. Daedalus: breaking nonmaximum suppression in object detection via adversarial examples. IEEE Transactions on Cybernetics, 2021, 52 (8): 7427- 7440.
doi: 10.1109/TCYB.2020.3041481
|
14 |
XU X , ZHANG J R , LI Y J , et al. Adversarial attack against urban scene segmentation for autonomous vehicles. IEEE Transactions on Industrial Informatics, 2021, 17 (6): 4117- 4126.
doi: 10.1109/TII.2020.3024643
|
15 |
ARNAB A , MIKSIK O , TORR P H S . On the robustness of semantic segmentation models to adversarial attacks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (12): 3040- 3053.
URL
|
16 |
ZHANG Z X , HUANG S Z , LIU X W , et al. Adversarial attacks on YOLACT instance segmentation. Computers & Security, 2022, 116, 102682.
doi: 10.1016/j.cose.2022.102682
|
17 |
黄世泽, 张肇鑫, 董德存, 等. 针对车载环境感知系统的对抗样本生成方法. 同济大学学报(自然科学版), 2022, 50 (10): 1377- 1384.
URL
|
|
HUANG S Z , ZHANG Z X , DONG D C , et al. Adversarial example generation method for vehicle environment perception system. Journal of Tongji University (Natural Science), 2022, 50 (10): 1377- 1384.
URL
|
18 |
LI X L, KOU K C, ZHAO B. Weather GAN: multi-domain weather translation using generative adversarial networks[EB/OL]. [2023-11-02]. https://arxiv.org/abs/2103.05422.
|
19 |
van ETTEN A. The weaknesses of adversarial camouflage in overhead imagery[C]//Proceedings of the IEEE Applied Imagery Pattern Recognition Workshop (AIPR). Washington D. C., USA: IEEE Press, 2022: 1-7.
|
20 |
JIA X J, WEI X X, CAO X C, et al. Adv-watermark: a novel watermark perturbation for adversarial examples[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 1579-1587.
|
21 |
陈晋音, 沈诗婧, 苏蒙蒙, 等. 车牌识别系统的黑盒对抗攻击. 自动化学报, 2021, 47 (1): 121- 135.
doi: 10.16383/j.aas.c190488
|
|
CHEN J , SHEN S , SU M , et al. Black- box adversarial attack on license plate recognition system. Acta Automatica Sinica, 2021, 47 (1): 121- 135.
doi: 10.16383/j.aas.c190488
|
22 |
WANG J K, LIU A S, YIN Z X, et al. Dual attention suppression attack: generate adversarial camouflage in physical world[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 8565-8574.
|
23 |
ZHONG Y Q, LIU X M, ZHAI D M, et al. Shadows can be dangerous: stealthy and effective physical-world adversarial attack by natural phenomenon[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 15345-15354.
|
24 |
ABHIRAM G, SHERMAN A M, CHAN S H. Optical adversarial attack[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Washington D. C., USA: IEEE Press, 2021: 92-101.
|
25 |
LORIS G , MALHAR J , LORIS R , et al. Adversarial scratches: deployable attacks to CNN classifiers. Pattern Recognition, 2023, 133, 108985.
doi: 10.48550/arXiv.2204.09397
|
26 |
DUAN R J, MA X J, WANG Y S, et al. Adversarial camouflage: hiding physical-world attacks with natural styles[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 1000-1008.
|