1 |
庞亮, 兰艳艳, 徐君, 等. 深度文本匹配综述. 计算机学报, 2017, 40 (4): 985- 1003.
doi: 10.11897/SP.J.1016.2017.00985
|
|
PANG L , LAN Y Y , XU J , et al. A survey on deep text matching. Chinese Journal of Computers, 2017, 40 (4): 985- 1003.
doi: 10.11897/SP.J.1016.2017.00985
|
2 |
CHOWDHURY G G . Introduction to modern information retrieval. [S.l.]: Facet Publishing, 2010.
|
3 |
WANG Y X , HOU Y T , CHE W X , et al. From static to dynamic word representations: a survey. International Journal of Machine Learning and Cybernetics, 2020, 11 (7): 1611- 1630.
doi: 10.1007/s13042-020-01069-8
|
4 |
|
5 |
|
6 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-10-05]. http://arxiv.org/abs/1810.04805v2.
|
7 |
|
8 |
|
9 |
马帅, 刘建伟, 左信. 图神经网络综述. 计算机研究与发展, 2022, 59 (1): 47- 80.
doi: 10.7544/issn1000-1239.20201055
|
|
MA S , LIU J W , ZUO X . Survey on graph neural network. Journal of Computer Research and Development, 2022, 59 (1): 47- 80.
doi: 10.7544/issn1000-1239.20201055
|
10 |
范涛, 王昊, 吴鹏. 基于图卷积神经网络和依存句法分析的网民负面情感分析研究. 数据分析与知识发现, 2021, 5 (9): 97- 106.
doi: 10.11925/infotech.2096-3467.2021.0146
|
|
FAN T , WANG H , WU P . Sentiment analysis of online users' negative emotions based on graph convolutional network and dependency parsing. Data Analysis and Knowledge Discovery, 2021, 5 (9): 97- 106.
doi: 10.11925/infotech.2096-3467.2021.0146
|
11 |
|
12 |
方红, 苏铭, 冯一铂, 等. 结合gazetteers和句法依存树的中文命名实体识别. 计算机工程与应用, 2022, 58 (18): 227- 232.
doi: 10.3778/j.issn.1002-8331.2102-0130
|
|
FANG H , SU M , FENG Y B , et al. Chinese named entity recognition combined with gazetteers and syntactic dependency tree. Computer Engineering and Applications, 2022, 58 (18): 227- 232.
doi: 10.3778/j.issn.1002-8331.2102-0130
|
13 |
张军莲, 张一帆, 汪鸣泉. 基于图卷积神经网络的中文实体关系联合抽取. 计算机工程, 2021, 47 (12): 103- 111.
doi: 10.19678/j.issn.1000-3428.0059574
|
|
ZHANG J L , ZHANG Y F , WANG M Q , et al. Joint extraction of Chinese entity relations based on graph convolutional neural network. Computer Engineering, 2021, 47 (12): 103- 111.
doi: 10.19678/j.issn.1000-3428.0059574
|
14 |
LI Y Z, YU B W, XUE M G, et al. Enhancing pre-trained Chinese character representation with word-aligned attention[EB/OL]. [2023-10-05]. http://arxiv.org/abs/1911.02821v2.
|
15 |
VASHISHTH S, BHANDARI M, YADAV P, et al. Incorporating syntactic and semantic information in word embeddings using graph convolutional networks[EB/OL]. [2023-10-05]. http://arxiv.org/abs/1809.04283v4.
|
16 |
HOU X C, QI P, WANG G T, et al. Graph ensemble learning over multiple dependency trees for aspect-level sentiment classification[EB/OL]. [2023-10-05]. http://arxiv.org/abs/2103.11794v1.
|
17 |
SALTON G . The SMART retrieval system: experiments in automatic document processing. Englewood Cliffs, NJ: Prentice-Hall, 1971.
|
18 |
余传明, 薛浩东, 江一帆. 基于深度交互的文本匹配模型研究. 情报学报, 2021, 40 (10): 1015- 1026.
doi: 10.3772/j.issn.1000-0135.2021.10.001
|
|
YU C M , XUE H D , JIANG Y F . Research on text matching model based on deep interaction. Journal of the China Society for Scientific and Technical Information, 2021, 40 (10): 1015- 1026.
doi: 10.3772/j.issn.1000-0135.2021.10.001
|
19 |
|
20 |
HUANG P S, HE X D, GAO J F, et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2013: 2333-2338.
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
SU J , AHMED M , LIU B Y . RoFormer: enhanced transformer with rotary position embedding. Neurocomputing, 2024, 568 (1): 127063.
doi: 10.1016/j.neucom.2023.127063
|
29 |
SUN Y , WANG S H , LI Y K , et al. ERNIE 2.0:a continual pre-training framework for language understanding. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (5): 8968- 8975.
|
30 |
SUN Y, WANG S H, FENG S K, et al. ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. [2023-10-05]. http://arxiv.org/abs/2107.02137v1.
|