1 |
柳长源, 曹园园, 罗一鸣. 基于视频图像的车辆实时检测系统. 计算机工程, 2019, 45 (2): 265-269, 277.
doi: 10.19678/j.issn.1000-3428.0048973
|
|
LIU C Y , CAO Y Y , LUO Y M . Real-time vehicle detection system based on video image. Computer Engineering, 2019, 45 (2): 265-269, 277.
doi: 10.19678/j.issn.1000-3428.0048973
|
2 |
李明熹, 林正奎, 曲毅. 计算机视觉下的车辆目标检测算法综述. 计算机工程与应用, 2019, 55 (24): 20- 28.
|
|
LI M X , LIN Z K , QU Y . Survey of vehicle object detection algorithm in computer vision. Computer Engineering and Applications, 2019, 55 (24): 20- 28.
|
3 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
|
LI S J , GENG L L , WANG P . Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
4 |
杨秀璋, 武帅, 李娜, 等. 复杂环境下自适应去雾的YOLOv3汽车识别算法. 计算机科学, 2023, 50 (S2): 208- 215.
|
|
YANG X Z , WU S , LI N , et al. YOLOv3 vehicle recognition algorithm for adaptive dehazing in complex environments. Computer Science, 2023, 50 (S2): 208- 215.
|
5 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
7 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 7263-7271.
|
8 |
|
9 |
|
10 |
GEIGER A , LENZ P , STILLER C , et al. Vision meets robotics: the KITTI dataset. International Journal of Robotics Research, 2013, 32 (11): 1231- 1237.
doi: 10.1177/0278364913491297
|
11 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 324-333.
|
12 |
ROMERA-PAREDES B, TORR P H S, ROMERA-PAREDES B, et al. An embarrassingly simple approach to zero-shot learning[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York, USA: ACM Press, 2015: 2152-2161.
|
13 |
BANSAL A, SIKKA K, SHARMA G, et al. Zero-shot object detection[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 397-414.
|
14 |
XIAN Y Q, AKATA Z, SHARMA G, et al. Latent embeddings for zero-shot classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 69-77.
|
15 |
ZAERIAN A, ROSA K D, HU D H, et al. Open-vocabulary object detection using captions[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 14393-14402.
|
16 |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2021: 8748-8763.
|
17 |
GU X Y, LIN T Y, KUO W C, et al. Open-vocabulary object detection via vision and language knowledge distillation[EB/OL]. [2023-12-01]. https://arxiv.org/abs/2104.13921v3.
|
18 |
ZHONG Y W, YANG J W, ZHANG P C, et al. RegionCLIP: region-based language-image pretraining[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 16793-16803.
|
19 |
JIA C, YANG Y, XIA Y, et al. Scaling up visual and vision-language representation learning with noisy text supervision[C]//Proceedings of IEEE International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2021: 4904-4916.
|
20 |
LI J, SELVARAJU R, GOTMARE A, et al. Align before fuse: vision and language representation learning with momentum distillation[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2021: 9694-9705.
|
21 |
LI J, LI D, XIONG C, et al. Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2022: 12888-12900.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 770-778.
|
23 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 356-366.
|
24 |
CARION N , MASSA F , SYNNAEVE G , et al. End-to-end object detection with transformers. Berlin, Germany: Springer, 2020.
|
25 |
YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York, USA: ACM Press, 2016: 516-520.
|
26 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2023-12-01]. https://arxiv.org/abs/2010.11929.
|
27 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-12-01]. https://arxiv.org/abs/1810.04805v2.
|
28 |
LIU W. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2015: 5675-567.
|
29 |
BERKAN D. Zero-shot object detection by hybrid region embedding[C]//Proceedings of British Machine Vision Conference. London, UK: [s. n. ], 2018: 431-442.
|