1 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
2 |
ZHANG Y, XIANG T, HOSPEDALES T M, et al. Deep mutual learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4320-4328.
|
3 |
王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展. 计算机工程与应用, 2023, 59 (14): 15- 29.
|
|
WANG L Y , BAI J , LI W J , et al. Research progress of YOLO series target detection algorithms. Computer Engineering and Applications, 2023, 59 (14): 15- 29.
|
4 |
梁华刚, 赵慧霞, 刘丽华, 等. 结合跨层特征融合与级联检测器的防震锤缺陷检测. 中国图象图形学报, 2023, 28 (11): 3485- 3496.
|
|
LIANG H G , ZHAO H X , LIU L H , et al. Combining cross-layer feature fusion with cascade detectors for anti-vibration hammer defects detection. Journal of Image and Graphics, 2023, 28 (11): 3485- 3496.
|
5 |
阎光伟, 周香君, 焦润海, 等. 融合先验信息和特征约束的杆塔螺栓缺陷检测. 中国图象图形学报, 2023, 28 (11): 3497- 3508.
|
|
YAN G W , ZHOU X J , JIAO R H , et al. Defect detection of tower bolts by fusion of priori information and feature constraints. Journal of Image and Graphics, 2023, 28 (11): 3497- 3508.
|
6 |
闵巍庆, 刘林虎, 刘宇昕, 等. 食品图像识别方法综述. 计算机学报, 2022, 45 (3): 542- 566.
|
|
MIN W Q , LIU L H , LIU Y X , et al. A survey on food image recognition. Chinese Journal of Computers, 2022, 45 (3): 542- 566.
|
7 |
季娟娟, 王佳, 陈亚杰, 等. 基于改进YOLO v4的热轧带钢表面缺陷检测. 计算机工程与设计, 2023, 44 (9): 2786- 2793.
|
|
JI J J , WANG J , CHEN Y J , et al. Surface defect detection of hot rolled strip based on improved YOLO v4. Computer Engineering and Design, 2023, 44 (9): 2786- 2793.
|
8 |
CAO X H , SU Y X , GENG X , et al. YOLO-SF: YOLO for fire segmentation detection. IEEE Access, 2023, 11, 111079- 111092.
doi: 10.1109/ACCESS.2023.3322143
|
9 |
黄小平, 冯涛, 郭阳阳, 等. 基于改进YOLO v5s的轻量级奶牛体况评分方法. 农业机械学报, 2023, 54 (6): 287- 296.
|
|
HUANG X P , FENG T , GUO Y Y , et al. Lightweight dairy cow body condition scoring method based on improved YOLO v5s. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (6): 287- 296.
|
10 |
郑道能. 一种改进的tiny YOLO v3煤矸石快速识别模型. 工矿自动化, 2023, 49 (4): 113- 119.
|
|
ZHENG D N . An improved tiny YOLO v3 rapid recognition model for coal-gangue. Industry and Mine Automation, 2023, 49 (4): 113- 119.
|
11 |
王金平, 刘春芽, 郑凤飞, 等. 基于目标检测与语义分割智慧工地施工人员安全状况判断研究. 公路, 2023, 68 (4): 282- 288.
|
|
WANG J P , LIU C Y , ZHENG F F , et al. Research on safety status judgment of smart site construction workers based on target detection and semantic segmentation. Highway, 2023, 68 (4): 282- 288.
|
12 |
ZHANG Y, FANG X, LI F, et al. Mutual learning inspired prediction network for video anomaly detection[C]//Proceedings of Conference on Pattern Recognition and Computer Vision. Berlin, Germany: Springer, 2022: 578-593.
|
13 |
WU R M, FENG M Y, GUAN W L, et al. A mutual learning method for salient object detection with intertwined multi-supervision[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 8142-8151.
|
14 |
MITTAL G, YAGNIK K B, GARG M, et al. SpotGarbage: smartphone app to detect garbage using deep learning[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, USA: ACM Press, 2016: 940-945.
|
15 |
HUANG Y B, QIU C Y, GUO Y, et al. Surface defect saliency of magnetic tile[C]//Proceedings of the 14th IEEE International Conference on Automation Science and Engineering. Washington D. C., USA: IEEE Press, 2018: 612-617.
|
16 |
|
17 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
18 |
|
19 |
ZHONG Z , ZHENG L , KANG G L , et al. Random erasing data augmentation. Artificial Intelligence, 2020, 34 (7): 13001- 13008.
|
20 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
21 |
CHEN Z H, YANG C, LI Q F, et al. Disentangle your dense object detector[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4939-4948.
|
22 |
FENG C J, ZHONG Y J, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 3490-3499.
|
23 |
|
24 |
CHEN S F, SUN P Z, SONG Y B, et al. DiffusionDet: diffusion model for object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2023: 19773-19786.
|
25 |
ZHANG S L, WANG X J, WANG J Q, et al. Dense distinct query for end-to-end object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7329-7338.
|
26 |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2023-11-10]. https://arxiv.org/abs/2112.05561v1.
|
27 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press 2018: 7132-7141.
|