作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (6): 385-394. doi: 10.19678/j.issn.1000-3428.0069033

• 开发研究与工程应用 • 上一篇    

基于动静结合互学习的预制梁工序检测方法

冯晓飞1, 谢诚2, 张秀振1, 董仕奎1, 陈军胜1, 叶舒3, 钟忺3,*()   

  1. 1. 山东东方路桥建设有限公司技术创新中心, 山东 济南 250101
    2. 山东省交通规划设计院集团有限公司科技研发中心, 山东 济南 250101
    3. 武汉理工大学计算机与人工智能学院, 湖北 武汉 430070
  • 收稿日期:2023-12-15 出版日期:2025-06-15 发布日期:2024-05-28
  • 通讯作者: 钟忺
  • 基金资助:
    国家自然科学基金(62271361); 山东省交通运输科技计划项目(2022B45)

Detection Method of Precast Beam Process Based on Dynamic-Static Fusion Mutual Learning

FENG Xiaofei1, XIE Cheng2, ZHANG Xiuzhen1, DONG Shikui1, CHEN Junsheng1, YE Shu3, ZHONG Xian3,*()   

  1. 1. Technical Innovation Center, Shandong Dongfang Highway and Bridge Construction Co., Ltd., Jinan 250101, Shandong, China
    2. Technology Research and Development Center, Shandong Provincial Communications Planning and Design Institute Group Co., Ltd., Jinan 250101, Shandong, China
    3. School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2023-12-15 Online:2025-06-15 Published:2024-05-28
  • Contact: ZHONG Xian

摘要:

针对预制梁场位置偏远、场景复杂、光线不足, 导致数据采集困难、背景干扰、画质受损等问题, 提出一种基于动静结合互学习的预制梁工序检测方法。在单阶段目标检测模型上建立互学习框架, 分别使用数据扩增技术在空间和时间上对样本干扰的能力, 构造动静结合的双分支子网络, 在网络中引入基于归一化的注意力通道子模块动态地调整通道权重, 以适应真实场景下的环境光照复杂性和噪声干扰随机性。为充分发挥两支子网络各自的优势, 利用目标检测模型真实值的预测边界框不唯一的特性, 提出正样本对齐策略, 实现边界框数量及表征分布的双重对齐。构建一个基于真实场景的预制梁工序数据集, 在自制数据集上的实验结果表明, 该方法的精确率和均值平均精度分别达到了97.2%和97.7%, 推理速度达到了78帧/s, 在满足工业落地应用需求的同时, 为预制梁工序检测识别问题提供了一种有效且可靠的解决方案。

关键词: 动静结合, 候选框互学习, 正样本对齐, 工序检测识别, 目标检测

Abstract:

The remote location of precast beam yards, complex scenes, difficulties in data collection due to poor lighting, background interference, and degraded image quality, all create challenges for precast beam processing. This study proposes a dynamic-static mutual learning detection method for precast beam processing. The study establishes a mutual learning framework on a single-stage object-detection model. It uses data augmentation techniques to enhance the ability of a model to manage sample spatial and temporal interference, constructing a dual-branch subnetwork that combines dynamic and static features. Simultaneously, a normalization-based attention channel submodule is introduced into the network to dynamically adjust the channel weights. Through these techniques, the model becomes more adaptable to the complexity of environmental lighting and the randomness of noise interference in real scenes. To fully leverage the respective advantages of the two subnetworks, the study also proposes a positive sample alignment strategy, leveraging the inherent nonunique characteristics of a single real value's predicted bounding box in the object detection model. Consequently, a dual alignment is achieved, addressing both the quantity and distribution of bounding boxes. A precast beam process dataset based on real scenarios is constructed and used to validate the effectiveness of the proposed method. The precision and mean average precision reach 97.2% and 97.7%, respectively, at an inference speed of 78 frame/s, which meets industrial application demands and offers an effective solution for precast beam process detection and recognition.

Key words: dynamic-static fusion, candidate box mutual learning, positive sample alignment, process detection and recognition, object detection