[1]TAIGMAN Y,YANG M,RANZATO M,et al.Deepface:closing the gap to human-level performance in face verifica-tion[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:1701-1708.
[2]姚相坤,万里红,霍宏,等.基于多结构卷积神经网络的高分遥感影像飞机目标检测[J].计算机工程,2017,43(1):259-267.
[3]易生,梁华刚,茹锋.基于多列深度3D卷积神经网络的手势识别[J].计算机工程,2017,43(8):243-248.
[4]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[5]王兆凯,李亚星,冯旭鹏,等.基于深度信念网络的个性化信息[J].计算机工程,2016,42(10):201-206.
[6]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:580-587.
[7]GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE Inter-national Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2015:1440-1448.
[8]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[9]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:779-788.
[10]DENTON E,ZAREMBA W,BRUNA J,et al.Exploiting linear structure within convolutional networks for efficient evaluation[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambrige,USA:MIT Press,2014:1269-1277.
[11]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Proceedings of International Conference on Neural Information Processing Systems.New York,USA:ACM,2012:1097-1105.
[12]ZEILER M D,FERGUS R.Visualizing and understanding convolutional networks[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2014:818-833.
[13]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-09-17].https://arxiv.org/abs/1409.1556v6.
[14]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press:2015:1-9.
[15]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778.
[16]FORREST N I,SONG H,MATTHEW W M,et al.SqueezeNet:alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2017-09-17].https://arxiv.org/pdf/1602.07360.pdf.
[17]HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2017-09-17].https://arxiv.org/pdf/1704.04861.pdf.
[18]LIN M,CHEN Q,YAN S.Network in network[EB/OL].[2017-09-17].https://arxiv.org/pdf/1312.4400v3.pdf.
[19]SHANG W,SOHN K,ALMEIDA D,et al.Understanding and improving convolutional neural networks via concatenated rectified linear units[EB/OL].[2017-09-17].https://arxiv.org/pdf/1603.05201.pdf.
[20]李传朋,秦品乐,张晋京.基于浓度卷识神经网络的图像去噪研究[J].计算机工程,2017,43(3):253-260. |