[1] 姚宇婕, 刘广钟, 孔维全. 基于多普勒测速的水下传感器时间同步算法[J]. 计算机工程, 2021, 47(4):147-152. YAO Y J, LIU G Z, KONG W Q. Time synchronization algorithm of underwater sensor based on Doppler velocity measurement[J]. Computer Engineering, 2021, 47(4):147-152.(in Chinese) [2] TIRELLI I, IANIRO A, DISCETTI S. A simple trick to improve the accuracy of PIV/PTV data[J]. Experimental Thermal and Fluid Science, 2023, 145:110872. [3] TAURO F, PETROSELLI A, GRIMALDI S. Optical sensing for stream flow observations:a review[J]. Journal of Agricultural Engineering, 2018, 49(4):199-206. [4] LU J H, YANG X H, WANG J P. Velocity vector estimation of two-dimensional flow field based on STIV[J]. Sensors, 2023, 23(2):955. [5] LAGEMANN C, LAGEMANN K, MUKHERJEE S, et al. Deep recurrent optical flow learning for particle image velocimetry data[J]. Nature Machine Intelligence, 2021, 3:641-651. [6] TAURO F, TOSI F, MATTOCCIA S, et al. Optical tracking velocimetry:leveraging optical flow and trajectory-based filtering for surface streamflow observations[J]. Remote Sensing, 2018, 10(12):2010. [7] PERKS M T. KLT-IV v1.0:image velocimetry software for use with fixed and mobile platforms[J]. Geoscientific Model Development, 2020, 13(12):6111-6130. [8] ANSARI S, RENNIE C D, JAMIESON E C, et al. RivQNet:deep learning based river discharge estimation using close-range water surface imagery[J]. Water Resources Research, 2023, 59(2):e031841. [9] 王万良, 杨胜兰, 赵燕伟, 等. 基于条件边界平衡生成对抗网络的河流表面流速估测[J]. 浙江大学学报(工学版), 2019, 53(11):2118-2128. WANG W L, YANG S L, ZHAO Y W, et al. Estimation of river surface flow velocity based on conditional boundary equilibrium generative adversarial network[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(11):2118-2128.(in Chinese) [10] TEED Z, DENG J. RAFT:recurrent all-pairs field transforms for optical flow[C]//Proceedings of ECCV'20. New York, USA:ACM Press, 2020:402-419. [11] 曹健, 陈怡梅, 李海生, 等. 基于深度学习的道路小目标检测综述[J]. 计算机工程, 2023, 49(10):1-12. CAO J, CHEN Y M, LI H S, et al. Survey of small target detection on roads based on deep learning[J]. Computer Engineering, 2023, 49(10):1-12.(in Chinese) [12] DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet:learning optical flow with convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C.,USA:IEEE Press, 2015:2758-2766. [13] RANJAN A, BLACK M J. Optical flow estimation using a spatial pyramid network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2017:2720-2729. [14] ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0:evolution of optical flow estimation with deep networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA:IEEE Press, 2017:1647-1655. [15] SUN D Q, YANG X D, LIU M Y, et al. PWC-Net:CNNs for optical flow using pyramid, warping, and cost volume[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:IEEE Press, 2018:8934-8943. [16] HUI T W, TANG X O, LOY C C. LiteFlowNet:a lightweight convolutional neural network for optical flow estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:IEEE Press, 2018:8981-8989 [17] YANG G, RAMANAN D. Volumetric correspondence networks for optical flow[C]//Proceedings of NIPS'19. Cambridge, USA:MIT Press, 2019:794-805. [18] JIANG S H, CAMPBELL D, LU Y, et al. Learning to estimate hidden motions with global motion aggregation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C.,USA:IEEE Press, 2021:9752-9761. [19] SHEN A, ZHU Y J, ANGELOV P, et al. Marine debris detection in satellite surveillance using attention mechanisms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17:4320-4330. [20] DICKSON M C, BOSMAN A S, MALAN K M. Hybridised loss functions for improved neural network generalisation[C]//Proceedings of Artificial Intelligence and Smart Systems Conference. Berlin, Germany:Springer, 2022:169-181. [21] WANG J, ZHANG Z, WANG Z J, et al. Deep learning optical flow with compound loss for dense fluid motion estimation[J]. Water, 2023, 15(7):1365. [22] YU C D, FAN Y W, BI X J, et al. Deep particle image velocimetry supervised learning under light conditions[J]. Flow Measurement and Instrumentation, 2021, 80:102000. [23] BAKER S, SCHARSTEIN D, LEWIS J P, et al. A database and evaluation methodology for optical flow[J]. International Journal of Computer Vision, 2011, 92(1):1-31. [24] BUTLER D J, WULFF J, STANLEY G B, et al. A naturalistic open source movie for optical flow evaluation[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin, Germany:Springer, 2012:611-625. [25] CAI S Z, ZHOU S C, XU C, et al. Dense motion estimation of particle images via a convolutional neural network[J]. Experiments in Fluids, 2019, 60(4):73. [26] BODART G, LE COZ J, JODEAU M, et al. Synthetic river flow videos for evaluating image-based velocimetry methods[J]. Water Resources Research, 2022, 58(12):e032251. [27] BIGGS H. Drone flow user guide v1.1-river remote sensing and surface velocimetry[EB/OL].[2023-12-10]. https://arxiv.org/abs/8299.77606. [28] TAURO F, PISCOPIA R, GRIMALDI S. Streamflow observations from cameras:large-scale particle image velocimetry or particle tracking velocimetry?[J]. Water Resources Research, 2017, 53(12):10374-10394. |