1 |
GUO Z Y, HUANG Y P, HU X, et al. A survey on deep learning based approaches for scene understanding in autonomous driving. Electronics, 2021, 10(4): 471.
doi: 10.3390/electronics10040471
|
2 |
HONG G, SUH D. Supervised-learning-based intelligent fault diagnosis for mechanical equipment. IEEE Access, 2021, 9, 116147- 116162.
doi: 10.1109/ACCESS.2021.3104189
|
3 |
ADEGUN A A, VIRIRI S, OGUNDOKUN R O. Deep learning approach for medical image analysis. Computational Intelligence and Neuroscience, 2021, 2021(3): 6215281.
|
4 |
MO Y J, WU Y, YANG X N, et al. Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing, 2022, 493, 626- 646.
doi: 10.1016/j.neucom.2022.01.005
|
5 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
6 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615
|
7 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M]. Berlin, Germany: Springer, 2015: 234-241.
|
8 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2881-2890.
|
9 |
YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 334-349.
|
10 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. [2023-04-20]. https://arxiv.org/abs/1412.7062v4.
|
11 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
12 |
|
13 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 833-851.
|
14 |
SUN L L, GE C H, ZHONG Y C. Design and implementation of face emotion recognition system based on CNN Mini_Xception frameworks. Journal of Physics: Conference Series, 2021, 2010(1): 012123.
doi: 10.1088/1742-6596/2010/1/012123
|
15 |
ZHAO C J, ZHAO H D, WANG G Z, et al. Hybrid depth-separable residual networks for hyperspectral image classification. Complexity, 2020, 2020, 4608647.
|
16 |
褚张晴晴, 钟志强, 颜子夜, 等. 基于特征融合与注意力机制的脑肿瘤分割算法. 计算机工程, 2023, 49(10): 154- 161.
URL
|
|
CHU Z Q Q, ZHONG Z Q, YAN Z Y, et al. Brain tumor segmentation algorithm based on feature fusion and attention mechanism. Computer Engineering, 2023, 49(10): 154- 161.
URL
|
17 |
GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey. Computational Visual Media, 2022, 8(3): 331- 368.
doi: 10.1007/s41095-022-0271-y
|
18 |
ZHANG L, XING B W, WANG W G, et al. Sea cucumber detection algorithm based on deep learning. Sensors, 2022, 22(15): 5717.
doi: 10.3390/s22155717
|
19 |
SHAHI T B, SITAULA C, NEUPANE A, et al. Fruit classification using attention-based MobileNetv2 for industrial applications. PLoS One, 2022, 17(2): e0264586.
doi: 10.1371/journal.pone.0264586
|
20 |
苏晓东, 李世洲, 赵佳圆, 等. 基于多级叠加和注意力机制的图像语义分割. 计算机工程, 2023, 49(9): 265-271, 278.
URL
|
|
SU X D, LI S Z, ZHAO J Y, et al. Image semantic segmentation based on multi-level superposition and attention mechanism. Computer Engineering, 2023, 49(9): 265-271, 278.
URL
|
21 |
LIU R R, TAO F, LIU X T, et al. RAANet: a residual ASPP with attention framework for semantic segmentation of high-resolution remote sensing images. Remote Sensing, 2022, 14(13): 3109.
doi: 10.3390/rs14133109
|
22 |
WANG S H, FERNANDES S L, ZHU Z Q, et al. AVNC: attention-based VGG-style network for COVID-19 diagnosis by CBAM. IEEE Sensors Journal, 2022, 22(18): 17431- 17438.
doi: 10.1109/JSEN.2021.3062442
|
23 |
叶剑锋, 徐轲, 熊峻峰, 等. 基于注意力机制和辅助任务的语义分割算法. 计算机工程, 2021, 47(9): 203-209, 216.
URL
|
|
YE J F, XU K, XIONG J F, et al. Semantic segmentation algorithm based on attention mechanism and auxiliary task. Computer Engineering, 2021, 47(9): 203-209, 216.
URL
|
24 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
25 |
GUO R Z, ZUO Z, SU S J, et al. A surface target recognition algorithm based on coordinate attention and double-layer cascade. Wireless Communications and Mobile Computing, 2022, 2022, 6317691.
|
26 |
徐浩宸, 刘满华. 基于多层次自注意力网络的人脸特征点检测. 计算机工程, 2024, 50(2): 239- 246.
URL
|
|
XU H C, LIU M H. Facial landmark detection based on hierarchical self-attention network. Computer Engineering, 2024, 50(2): 239- 246.
URL
|
27 |
YAN J, JIANG T S, LIU J K, et al. DNA-binding protein prediction based on deep transfer learning. Mathematical Biosciences and Engineering, 2022, 19(8): 7719- 7736.
|