1 |
李彬, 李悦欣, 林驿轩, 等. 考虑负荷动态响应特性的居民小微负荷优化调度策略. 供用电, 2024, 41(3): 61- 68.
|
|
LI B, LI Y X, LIN Y X, et al. Optimal scheduling strategy for residential small micro-loads considering dynamic response characteristics of loads. Distribution & Utilization, 2024, 41(3): 61- 68.
|
2 |
辛保安. 新型电力系统构建方法论研究. 新型电力系统, 2023, 1(1): 1- 18.
|
|
XIN B A. Research on the methodology of constructing new power systems. New Power System, 2023, 1(1): 1- 18.
|
3 |
鲁晓林. 电力系统智能化技术的应用与发展趋势. 光源与照明, 2023,(12): 213- 215.
|
|
LU X L. Application and development trend of intelligent technology of power system. Light Source and Illumination, 2023,(12): 213- 215.
|
4 |
王以良, 周鹏, 叶卫, 等. 基于金字塔网络的非侵入式负荷辨识及其隐私保护. 计算机工程, 2024, 50(5): 182- 189.
doi: 10.19678/j.issn.1000-3428.0067381
|
|
WANG Y L, ZHOU P, YE W, et al. Pyramid network based non-intrusive load monitoring and its privacy-preserving scheme. Computer Engineering, 2024, 50(5): 182- 189.
doi: 10.19678/j.issn.1000-3428.0067381
|
5 |
XIA M, WANG Z W, LU M, et al. MFAGCN: a new framework for identifying power grid branch parameters. Electric Power Systems Research, 2022, 207, 107855.
doi: 10.1016/j.epsr.2022.107855
|
6 |
BASSAMZADEH N, GHANEM R. Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks. Applied Energy, 2017, 193, 369- 380.
doi: 10.1016/j.apenergy.2017.01.017
|
7 |
MATEJICEK L. Energy outlook: spatial and temporal mapping of energy sources using GIS[M]//MATEJICEK L. Assessment of energy sources using GIS. Berlin, Germany: Springer, 2017: 61-109.
|
8 |
张石清, 王伟, 钱亚冠, 等. 面向深度学习的非侵入式负荷监测研究进展. 计算机系统应用, 2023, 32(3): 25- 47.
|
|
ZHANG S Q, WANG W, QIAN Y G, et al. Deep learning-based non-intrusive load monitoring: recent advances and perspectives. Computer Systems & Applications, 2023, 32(3): 25- 47.
|
9 |
姚珺. 基于GAN的多变量时间序列异常检测方法. 安庆师范大学学报(自然科学版), 2023, 29(2): 68- 74.
|
|
YAO J. Multivariate time series anomaly detection via generative adversarial networks. Journal of Anqing Normal University(Natural Science Edition), 2023, 29(2): 68- 74.
|
10 |
|
11 |
van HOUDT G, MOSQUERA C, NÁPOLES G. A review on the long short-term memory model. Artificial Intelligence Review, 2020, 53(8): 5929- 5955.
|
12 |
ESTEBAN C, HYLAND S L, RÄTSCH G. Real-valued(medical) time series generation with recurrent conditional GANs[EB/OL]. [2023-05-10]. https://arxiv.org/pdf/1706.02633.
|
13 |
YOON J, JARRETT D, van der SCHAAR M. Time-series generative adversarial networks. Advances in Neural Information Processing Systems, 2019, 32(4): 186- 191.
|
14 |
DENG Y, LU L, APONTE L. Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients. NPJ Digital Medicine, 2021, 4(1): 109.
|
15 |
苏鹏, 朱晓荣, 朱洪波. 基于TimeGAN和多臂老虎机的WMN接入模式选择方法. 无线电通信技术, 2023, 49(3): 424- 431.
|
|
SU P, ZHU X R, ZHU H B. Access mode selection method for wireless mesh networks based on TimeGAN and multi-armed bandits. Radio Communication Technology, 2023, 49(3): 424- 431.
|
16 |
丁国辉, 刘宇琪, 王言开, 等. 基于翻转网络的低相关性序列数据预测研究. 计算机工程, 2024, 50(2): 78- 90.
doi: 10.19678/j.issn.1000-3428.0067027
|
|
DING G H, LIU Y Q, WANG Y K, et al. Research on low-correlation sequence data prediction based on flip network. Computer Engineering, 2024, 50(2): 78- 90.
doi: 10.19678/j.issn.1000-3428.0067027
|
17 |
陆彦辉, 柳寒, 李航, 等. 基于多鉴别器生成对抗网络的时间序列生成模型. 通信学报, 2022, 43(10): 167- 176.
|
|
LU Y H, LIU H, LI H, et al. Time series generation model based on multi-discriminator generative adversarial network. Journal on Communications, 2022, 43(10): 167- 176.
|
18 |
何银银, 胡静, 陈志泊. 融合门控变换机制和GAN的低光照图像增强方法. 计算机工程, 2024, 50(2): 247- 255.
doi: 10.19678/j.issn.1000-3428.0067252
|
|
HE Y Y, HU J, CHEN Z B. Low-light image enhancement method combining gated transformation mechanism and GAN. Computer Engineering, 2024, 50(2): 247- 255.
doi: 10.19678/j.issn.1000-3428.0067252
|
19 |
孙本亮. 基于深度神经网络的负荷监测方法研究[D]. 天津: 河北工业大学, 2021.
|
|
SUN B L. Research on load monitoring method based on deep neural network[D]. Tianjin: Hebei University of Technology, 2021. (in Chinese)
|
20 |
刘睿迪. 基于数据增强和深度学习的非侵入式负荷分解方法[D]. 杭州: 浙江大学, 2021.
|
|
LIU R D. Non-intrusive load decomposition based on data augmentation and deep learning[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
|
21 |
崔黎丽, 周云海, 石基辰, 等. 基于爬坡方向状态划分的MCMC风电功率序列建模方法. 现代电子技术, 2024, 47(8): 113- 120.
|
|
CUI L L, ZHOU Y H, SHI J C, et al. Method of MCMC wind power sequence modeling based on climbing direction state division. Modern Electronic Technology, 2024, 47(8): 113- 120.
|
22 |
叶宝林, 戴本岙, 张鸣剑, 等. 基于图卷积网络的交通流预测方法综述. 南京信息工程大学学报(自然科学版), 2024, 16(3): 291- 310.
|
|
YE B L, DAI B A, ZHANG M J, et al. A survey of traffic flow prediction methods based on graph convolutional networks. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2024, 16(3): 291- 310.
|
23 |
陈浩, 杨俊安, 刘辉. 基于深度残差适配网络的通信辐射源个体识别. 系统工程与电子技术, 2021, 43(3): 603- 609.
|
|
CHEN H, YANG J A, LIU H. Communication transmitter individual identification based on deep residual adaptation network. Systems Engineering and Electronics, 2021, 43(3): 603- 609.
|
24 |
MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV). Washington D. C., USA: IEEE Press, 2017: 2794-2802.
|
25 |
DONG J Y, YIN R Y, SUN X, et al. Inpainting of remote sensing SST images with deep convolutional generative adversarial network. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 173- 177.
|
26 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2017: 214-223.
|
27 |
|