1 |
KAMIMURA H, MATSUOKA T, OKAI H, et al. The associations between suicide-related behaviors, prefrontal dysfunction in emotional cognition, and personality traits in mood disorders. Scientific Reports, 2022, 12, 17377.
doi: 10.1038/s41598-022-22345-3
|
2 |
IMMANUEL J D, RAGAVAN H M, RANI P G, et al. AI to detect social media users depression polarity score[C]//Proceedings of the International Conference on Sustainable Computing and Data Communication Systems(ICSCDS). Washington D. C., USA: IEEE Press, 2022: 415-418.
|
3 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2023-09-10]. http://arxiv.org/abs/1810.04805.
|
4 |
DAI Z, YANG Z, YANG Y, et al. Transformer-XL: attentive language models beyond a fixed-length context[EB/OL]. [2023-09-10]. http://arxiv.org/abs/1901.02860.
|
5 |
YANG Z L, DAI Z H, YANG Y M, et al. XLNet: generalized autoregressive pretraining for language understanding[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2019: 5753-5763.
|
6 |
ZHAO Y, LIANG Z L, DU J, et al. Multi-head attention-based long short-term memory for depression detection from speech. Frontiers in Neurorobotics, 2021, 15, 684037.
doi: 10.3389/fnbot.2021.684037
|
7 |
DU M H, LIU S, WANG T, et al. Depression recognition using a proposed speech chain model fusing speech production and perception features. Journal of Affective Disorders, 2023, 323, 299- 308.
doi: 10.1016/j.jad.2022.11.060
|
8 |
CHEN K, DU X J, ZHU B L, et al. HTS-AT: a hierarchical token-semantic audio transformer for sound classification and detection[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Washington D. C., USA: IEEE Press, 2022: 646-650.
|
9 |
ROHANIAN M, HOUGH J, PURVER M. Detecting depression with word-level multimodal fusion[C]//Proceedings of the Interspeech 2019. [S. l. ]: ISCA, 2019: 7159-7163.
|
10 |
LAM G, HUANG D Y, LIN W S. Context-aware deep learning for multi-modal depression detection[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Washington D. C., USA: IEEE Press, 2019: 3946-3950.
|
11 |
牛萌. 多模态抑郁症自动检测方法[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
|
NIU M. Automatic detection method of multimodal depression[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
|
12 |
SHEN Y, YANG H Y, LIN L. Automatic depression detection: an emotional audio-textual corpus and a GRU/BiLSTM-based model[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D. C., USA: IEEE Press, 2022: 6247-6251.
|
13 |
PRIYASAD D, FERNANDO T, DENMAN S, et al. Memory based fusion for multi-modal deep learning. Information Fusion, 2021, 67, 136- 146.
doi: 10.1016/j.inffus.2020.10.005
|
14 |
IYORTSUUN N K, KIM S H, YANG H J, et al. Additive cross-modal attention network(ACMA) for depression detection based on audio and textual features. IEEE Access, 2024, 12, 20479- 20489.
doi: 10.1109/ACCESS.2024.3362233
|
15 |
LIAN Z, LIU B, TAO J H. CTNet: conversational transformer network for emotion recognition. ACM Transactions on Audio, Speech, and Language Processing, 2021, 29, 985- 1000.
|
16 |
|
17 |
OTHMANI A, ZEGHINA A O, MUZAMMEL M. A model of normality inspired deep learning framework for depression relapse prediction using audiovisual data. Computer Methods and Programs in Biomedicine, 2022, 226, 107132.
doi: 10.1016/j.cmpb.2022.107132
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
19 |
李岳泽, 左祥麟, 左万利, 等. 基于BERT-GCN的因果关系抽取. 吉林大学学报(理学版), 2023, 61(2): 325- 330.
|
|
LI Y Z, ZUO X L, ZUO W L, et al. Causality extraction based on BERT-GCN. Journal of Jilin University(Science Edition), 2023, 61(2): 325- 330.
|
20 |
CHEN Y X, ZHAO P C, QI M B, et al. Audio matters in video super-resolution by implicit semantic guidance. IEEE Transactions on Multimedia, 2022, 24, 4128- 4142.
doi: 10.1109/TMM.2022.3152941
|
21 |
el AFFENDI M A, al RAJHI K H S. Text encoding for deep learning neural networks: a reversible base 64(Tetrasexagesimal) integer transformation(RIT64) alternative to one hot encoding with applications to Arabic morphology[C]//Proceedings of the 6th International Conference on Digital Information, Networking, and Wireless Communications(DINWC). Washington D. C., USA: IEEE Press, 2018: 70-74.
|
22 |
PIMPALKAR A, RAJ R J R. MBiLSTMGloVe: embedding GloVe knowledge into the corpus using multi-layer BiLSTM deep learning model for social media sentiment analysis. Expert Systems with Applications, 2022, 203, 117581.
doi: 10.1016/j.eswa.2022.117581
|
23 |
LEI S. Research on the improved Word2Vec optimization strategy based on statistical language model[C]//Proceedings of the International Conference on Information Science, Parallel and Distributed Systems(ISPDS). Washington D. C., USA: IEEE Press, 2020: 356-359.
|
24 |
UDDIN M Z, DYSTHE K K, FØLSTAD A, et al. Deep learning for prediction of depressive symptoms in a large textual dataset. Neural Computing and Applications, 2022, 34(1): 721- 744.
doi: 10.1007/s00521-021-06426-4
|
25 |
SAMI K D, AUVDAIAPPAN M, DEEPA K, et al. Deep learning for depression detection using Twitter data. Intelligent Automation & Soft Computing, 2023, 36(2): 1301- 1313.
|
26 |
ZOGAN H, RAZZAK I, JAMEEL S, et al. DepressionNet: learning multi-modalities with user post summarization for depression detection on social media[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 133-142.
|
27 |
GHOSH T, al BANNA M H, al NAHIAN M J, et al. An attention-based hybrid architecture with explainability for depressive social media text detection in Bangla. Expert Systems with Applications, 2023, 213, 119007.
doi: 10.1016/j.eswa.2022.119007
|
28 |
KONG Q Q, CAO Y, IQBAL T, et al. PANNs: large-scale pretrained audio neural networks for audio pattern recognition. ACM Transactions on Audio, Speech, and Language Processing, 2020, 28, 2880- 2894.
|